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CHAPTER 1: INTRODUCTION
1.1 Preliminary Remarks

Metal fatigue under stress and thermal cycling is expected
to be a principal mode of failure in such engine components as turbine
blades and disks, and combustor liners. But fatigue design factors are
subject to considerabie uncertainty. For example, enormous scatter is
obsarved in cycles to failure fatigue test data with coefficients of
variation (standard deviation/mean) ranging typically from 20 to 70%.
Furthermore, scatter exists in operating enviornment data, and uncertain-
ties are present in the models used to predict stresses. Therefore life
predictions, which rely on the fatigue models and the data for such
models, are also subject to undertainty. It is suggested that the
appropriate mathematical model to describe fatigue design factors is a
probabilistic one rather than a deterministic one. Uncertainty in en-
vironments and in fatigue resistance imply uncertainty in fatigue life
predictions. This uncertainty can be analyzed rationally only using
probability theory.

A reliability approach to high temperature fatigue using
probabilistic design theory has at least the promise if not the guaran-
tee of producing better engineered design, i.e., components which are
more safe, reliable, and cost effective, relative to a deterministic
approach. Typically conventional design procedures tend to be

conservative and produce inconsistent levels of risk in components of a
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system.

The payoff for an improved design criteria. e.g., for engine

components, would be a savings in weight.

1.2 General Comments on Mechanical Reliability

The various uncertainties which exist in a mechanical de-

sign problem can be divided into statistical and nonstatistical (or

professional) uncertainties as follows

1.

Statistical Uncertainty (Data generally available or easy to
obtain)

a. In basic material behavior, e.g., the scatter observed
in basic S-N fatigue data.

b. In the estimates of the design parameters from data,
e.g., the estimate of the fatigue strength coefficient is a
random variable having a significantly large variance when only
a small sample of fatigue data is available.

¢. In the mechanical environment (load, high temperature,
corrosion, etc. which affect fatigue life)

Nonstatistical Uncertainty
(associated with assumptions made in the analysis)

a. In the theoretical model used to describe fatigue
strength, e.g., linear damage accumulation rules.

b. Introduced by the procedure used to compute nominal
stresses and temperatures in a component, i.e., assumptions
made in the computer analysis routines.

¢. Introduced by the models used to calculate fatigue
strains at the critical points.

1-2



d. In strength due to size effects, processing and machin-

ing operations, assembly operations, etc.

The above illustrations suggest that we are dealing with a
highly unpredictable physical phenomena. Some questions immediately
come to mind.
1. Do present analysis procedures provide results which are too
conservative? Are components overdasigned?
2. Are analyses telling us to provide too little material, or to
recommend improper details to insure adequate protection for fatigue?
3. In general, are the procedures which are currently being used
really producing high quality designs?
4. Can we quantify changes in risk (or probability of failure, or
percent items which fail) due to modifications in the design?
There is a need to take a hard look at the high temperature,
Tow cycle faticue design process from a probabilistic viewpoint to attempt
to answer these questions and thereby formulate design strateaies which

-ould reduce engine weight and provide real cost benefits.

Because of significant uncertainties in fatigue design fac-
tors, a probabilistic-statistical approach seems particularly relevant.
A1l design factors are treated as random variables. Recent develop-
ments in probabilistic design theory can be utilized to predict distri-
butions of fatigue life, or to establish design rules.

Commonly slated reasons for using a probabilistic approach

to 2sign include the following:
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1. It is argued that reliahility (or its complement, risk or
probability of failure) is the most meaningful index of structural
performance.

) 2. The effect on risk of making a design modification can be
quantified.

3. A mechanism is provided for explicitly accounting for avail-
able statistical data on design factors, e.g., in cycles to failure
fatigue data.

4. Factors which have nonstatistical uncertainty (due to assump-
tions made in analysis) can be treated as random variables. Their ef-
fect on design can be quantified and their relative importance assessed.
This information can provide guidance for decision makers regarding
which elements of the problem require further scrutiny. A rational
basis for decisions regarding research programs is available.

5. All components can be designed to a balanced level of risk,
thereby producing a more efficient system.

6. Probability based information on mechanical performance can be
used to develop rational policies towards pricing, warranties, spare

parts requirements, etc.

In summary, probabilistic design theory provides an improved

engineering representation of reality.

1-4
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1.3 An Iilustration of the Conservatism in Conventignal Design
Procedures

Design procedures and codes traditionally rely on a factor
of safety (applied to material strength) to insure acceptable reliability.
Such procedures have performed well, but it is generally thought that
requirements are typically overly conservative and that they produce
designs having an inconsistent level of risk among the components. At-
tempts to estimate materials savings which could be realized by prob-
ability based design criteria have produced figures of about 10%. Thus,
application of reliability methods to venicle power plant :esign promises
a payoff in weight savings at the same reliability levels.

As an example, consider the simple design problem illus-
trated in Fig. 1.1. The bar is subjected to a harmonic axial load Q(t).
Fatigue is considered the principal mode of failure. The service life
is given as NS = 500,000 cycles.

Because of analysis procadures, the amplitude Q is con-
sidered to be random. Statistics on Q are available. The mean value
is 4g = 16 kips (71.2 kN) and the coefficient of variation CQ = 0.10 .
The distribution of Q is lognormal. As a design value, a point on the
safe (upper) side of the distribution QO is chosen as the median plus
three standard deviations on a log basis. The calculations are sum-
marized in Table 1.1. See also Appendix I.

Data is available on the fatigue behavior of the material as
shown in Fig. 1.1. A basic linear model is assumed (See Chapt. 3 and 4)

on a log basis, and the least squares curve established. The model for
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Fig. 1.1

A DEMONSTRATION OF HOW CONVENTIONAL DESIGN

CAN PRODUCE CONSERVATIVE RESULTS
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cycles to failure is N = K§" where the median and coefficient of varia-

tion of K, denoted as K and Ck are given in the figure.

But the designer chooses a curve on the safe (lower) side
of the distribution as the least squares line minus three standard
deviations on a log basis. This curve is defined by NS = KO .

The conventional approach commonly will require a design
life N0 higher than NS' A factor of 2 is used here. The design require-
ment using conventional methods is given in Table 1.i.

Because statistics are available, the risk inherent in this
design can be estimated as shown in Table 1.1. Definitions and details
are provided in Chapter 7 and Appendix I. The estimated risk of

6

1.92 x 107" is generally considered to be overly conservative for mech-

anical and structural components where the consequences of failure are

. Cq s X -3
not disasterous. A target value of the probability of failure p. = 10
is accepted as being more reasonable.

-3 as the basic requirement, a

Using a value of Pe = 10
probability based design produces a smaller component. The estimated
weight savings of 15% by using a reiiability approach compares with an
often quoted estimate of 10% for the level of excess material required

by present design codes.

In summary, it was intended that this example illustrate
the fact that excessive levels of reliability can be produced by a
“pile-up" of safety factors applied to each component of the design al-
gorithm. It was not the intention to imply that all deterministic

design codes and procedures are overly conservative.
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TABLE 1.1

Calculations: Conventional vs. Probabilistic Design

CONVENTIONAL (DETERMINISTIC) DESIGN

®Establish Design Values (see aiso Appendix I for mathematics of
lognormal variates)

inQO = zné + 3anQ

e

G JQ/ CQ

%nQ © A1+ Cé

Qo = 21.5 kip :7 = "1
= 95.7 kN
ano = nK - 3ch
9K = /(T + :ﬁj
K, = 1.25 x 10'® (ksi units) €, = 0.40

5.20 x 10%° (MPa units)

®Dlesign Life
NO = 2Ns = 100,000 cycles

®Design Stress
SO = QO/A = 21.5/A ksi
®Design Equation
Cycles to failure, N = K S MmN
0o 0

@Solution 5 )
Area, A > 0.78 in- (5.03 cm )

Diameter D > 1.00 in (2.54 cm)

RISK IMPLIED BY THIS DESIGN
@ Safety Index

;- i (N/N)
%N
N = k(G )"
N /:.n—{(l + Ci)“ 5 Ca)ma
2= 4.62
@Probability of Failure
op = ¢ 4 pe = 1.92 x 107°
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. TABLE 1.1 Continued

REDESIGN USING RELIARILITY METHOD
®Target p; = 10'3 (reasonable level)
Target & = 3.09

®Solution (using above eguations)
Area, A = 0.€6 in:
Diameter D = 0.92 in

PERCENT WEIGHT SAVINGS BY USING RELIABILITY METHOD = 15%

1-9



LR

1.4 Goals of This Study

The ultimate goal of this study is to recommend methods of

reliability analysis for tha development of probability based design

criteria for fatigue design in general and high temperature fatigue in

particular.

It is intended that this study provide practical information

for engine designers.

Specific goals include the following.

1.

P
.

To develop methods of providing statistical summaries of

data for design purposes, i.e.,

a. Design values and/or design curves

b. Appropriate statistics which are required for a
reliability analysis.

To recommend methods of probabilistic design for a

complete reliability analysis of a component subjected to

high temperature, i.e., the problem where several random

design factors appear in an equation and where it is re-

quired to evaluate the risk.

To present the results of this study in a format for easy

implementation for engine designers .



A

1.5 What is Contained in This Report

This report summarizes the results of the first year of a compre-
hensive study on fatigue/creep reliability supported by the NASA/Lewis
Rese2rch Center. It is intended that this report provide practical
information useful for designers.

Chapter 2 summarizes methods available for statistical analysis
of ata on a single variable. Various schemes for establishing a design
value are presented.

Chapters 3, 4 and 5 summarize procedures for providing statistical
summaries of S-N fatigue data. Linear model analysis is presented and
applied to both homo- and heteroscedastic data. Preliminary consider-
ations of data analysis using the general strain-life model are included.

Attempts are made in Chapter 6 to present a coordinated overview of
the three basic approaches to formulating a fatigue design equation.
Performance of Miner's rule and strainrange partitioning are described
by statistical summaries.

Chapter 7 probides a summary of available reliability methods for
fatigue design. Two examples are presented in Chapter 8. One is a
strainrange partitioning example. The other is of a local strain analysis
model.

This report is considered preliminary. Work is continuing in all

areas, and future reports will provide more complete information.
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List of General References for Reliability and Probabilistic Design

The following references include some of the more important
sources of information in elementary applied probability theory and
statistics., probabilistic design and fatigue reliability. The list
is by no means exhaustive and does not include many excellent texts
in specialized areas of reliability engineering, quality control,
random orocess thecry, etc.

..... for basic probability and statistics
Ang, A. H.-S, and Tang, W., Probability Concepts in Engineering

Planning and Design, Wiley, 1975. Excellent text for engineer-
ing problems and statistics, but oriented to civil engineering.

Benjamin, J. R., and Cornell, C. A., Probability, Statistics and
Decision for Civil Engineers, McGraw-Hi1T, 1970. An excellent
reference for engineers of all types, uses modern techniques
with many examples, probably one of the best general references
available for engineers to date.

Bowker, A. H., and Lieberman, G. J., Engineering Statistics,
Prentice-Hall, 1972. An excellent reference, strong on test-
ing hypotheses and guality control.

Hines, W. H., and Montgomery, D. C., Probability and Statistics in
Engineering and Management Science, 2nd Ed., Wiley, 1980

Lipson, C., and Sheth, N. J., Statistical Design and Analysis of
Engineering Experiments, McGraw-Hi11, 1373. Treats problems
from mechanical engineering design theory.

Meyer, P. L., Introductory Probability and Statistical Applications,
Addison-WesTley, 1970. An excellent introduction to modern
probability theory and mathematical statistics.

Mood. A. M , and Grayhill, F. A., Introduction to the Theory of
Statistics, McGrew-Hill, 1963. Intermediate statistics, and
a Tittle divficult for a teginner.

Natrella, M. G., Experimental Statistics, Dept. of Commerce, 1963.
An excellent statistics '"cookhook"” full of examples on how-to-
do-it in testing hypotheses and many other tests.
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..... for probabilistic design

Ang, A. H.-S., and Cornell, C.A., "Reliability Basis for Structural
Safety," Journal of the Structural Division, ASCE, Sept. 1974.

Cornell, Ca.A., "A Probability Based Structural Code," ACI Journal,
Dec. 1969.

Dialog, Second International Workshop on Code Formats, Mexico City,
Jan. 1976, Danmarks Ingeniorakademi, Building 373, 2800 Lyngby,
Denmark.

E11ingwood, B., et al., "Development of a Probability Based Load
Criterion for American National Standard AS8," NBS Special
Publication 577, June 1980.

First Order Reliability Concepts for Design Codes, Bulletin D'Infor-
mation 112, Comite Europeen du Beton. Munich, July 1976.

Freudenthal, A.M., Garrelts, J.M., and Shinozuka, M., "The Analysis
of Structural Safety", Journal of the Structural Division, ASCE,
Vol.92, No ST1, Feb. 1966.

Galambos, T.V., Ravindra, M.K., (and others),... a series of eight
papers on Load and Resistance Factor Design (LRFD) in the Journal
of the Structural Division, Vol. 104, No. ST9, Sept. 1978.

Hasofer, A.M., and Lind, N.C., "An Exact and Invariant First Order
Reliability Format," Journal of the Engineering Mechanics Division,
ASCE, February 1974.

Haugen, E.B., Probabilistic Mechanical Design, Wiley, 1980.

Haugen, E.B., and Wirsching, P.H., "Probabilistic Design," a five part
series in Machine Design, starting April 17, 1975.

Kececioglu, D.B., and Cormier, D., "Designing a Specified Reliability
into a Component," Proceedings of the Third Reliability and Main-
tainability Conference, Washington, D.C , 1964,

Probabilistic Mechanics and Structural Relijability, (ed. A.H.-S. Ang
and M. Shinozuka), ASCE Tucson, January 1979.

Probabilistic Methods in Structural Engineering (ed. M. Shinozuka and
J.T.P. Yao), ASCE, 1981.

Rationalisation of Safety and Serviceability Factors in Structural
Codes, Report 63, CIRIA, Construction Industry Research and Infor-
mation Association, 6 Storey's Gate, London SWIP 3AU.
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..... for fatigue reliability (many other references cited in text)

Ang, A. H.-S., and Munse, W.H., "Practical Reliability Basis for
Structural Fatigue," ASCE National Structural Engineering Confer-
ence, Preprint 2494, April 1975.

Ellingwood, B., "Probabilistic Assessment of Low Cycle Fatigue Behavior
of Structural Welds," Journal of Pressure Vessel Technology, ASME,
Paper 75-PVP-29, February 1976.

Fatigue Reliability: A State of the Art Review, a four part series
1. "Fatigue Reliability: Introduction”
2. "Fatigue Reliability: Quality Assurance and Maintainability"
3. "Fatigue Relibility: Variable Amplitude Loading"
4. "Fatigue Reliability: Development of Criteria for Design"
Journal of the Structural Division, ASCE, Vol. 108, No. ST1, Jan.
1982.

Fong, J.T., "Uncertainties in Fatigue Life Prediction and a Rational
Definition of Safety Factors", Nuclear Engineering and Design,
Vol. 51, 1978.

Freudenthal, A.M., and Gumbel, E.J., "On the Statistical Interpretation
of Fatigue Tests," Proceedings of the Royal Society of London,
Series A, Vol. 216, 1353, pp. 309-322.

Freudenthal, A.M. and Gumbel, E.J., "Physical and Statistical Aspects
of Fatigue," Advances in Applied Mechanics, Vol. 4, 1956.

Kececioglu, D.B., and Chester, L.B., "Combined Axial Stress Fatigue
Reliability for AISI 4130 and 4340 Steels," ASME Paper 75-WA/DE-117,
1975.

Little, R.E., and Jeba, E.H., Statistical Design of Fatique Experiments,
Applied Science, 1975,

Whittaker, 1.C., Besuner, "A Reliability Analysis Approach to Fatigue
Life Variability of Aircraft Structures," Wright-Patterson Air Force
Base Technical Report AFML-TR-69-65, A;ril 1969.

Wirsching, P.H., "Fatigue Reliability of Welded Joints in Offshore
Structures, Proceedings of the Offshcre Technology Conference 0TC
3380, 1979, also published in the International Journal of Fatigue,
April 1980.

Yang, J.N., "Statistical Approach to Fatigue and Fracture Including
Maintenance Procedures" Fracture Mechanics, U. of Virginia Press,
1980.

Yao, Q.T.P., "Fatigue Reliability and Design", Journal of the Structural
Division, ASCE, Vol. 100, No. ST9, September 1974.
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Chapter 2 METHODS OF DATA ANALYSIS OF A SINGLE VARIABLE

2.1 Preliminary Remarks

Given a randcm set of observations on a design factor, it is necessary to
interpret the data in order to make a design decisicen. For example the random
sample of Table 2.1 is cycles to failure fatigue data for tests at a single
stress level. In order to insure an acceptably low Jevel of risk (of proba-
bility of failure) it may be necessary to specify either a "design value" on
the safe (lower) side of the distribution or the statistics of the variable,
depending upon the design strategy used.

This chapter summarizes various statistical tools which can be employed
to provide designers with information that they need to make decisions on a
single variable. Later chapters deal with analysis of SN data. The focus of

this report is on fatigue, but techniques described herein have wide appreciation.

2.2 Mathematical Tools for Probability Estimates

Because observed cycles to failure has significant scatter, it is suggested
that cycles to failure, denoted as N, be treated as a random variable. There-

fore a probability density function (pdf) fN(n) is defined such that

"
A = '
P(nA < N< nB) v}fN(n)dn (2.1)
n
A
where P(-) denotes the probability of the event in parentheses.

The cumulative distribution function (cdf) FN(n) is defined as

n

Ial

Fy(n) = P(N < n) = Fy(x)dx (2.2)

where n denotes a specific value of the random variable N.
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Table 2.1

Cycles to Failure of Specimens Tested at the Same Stress Level [Ref: Evans (13)]

Ni
Cycles to Failure (}O3 cycles)
15.4
22.2
17.3
23.6
14.4
12.3
16.5
25.7
17.5
27.0
20.5
21.3
0
0
0
6
0
7
3
0
0
0

14.
27.
23.
23.
16.
14.
10.
16.
13.
31.

Sample Size, n

22
Sample Mean, N 3 )

19.2 (107 cycles
5.59 (103 cycles)
29.1%

]

Sample Standard Deviation, SN

Sample Coefficient of Variation

W
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An example of a pdf and corresponding cdf is given in Figure 2.1. Note

that all of the information about probabilities of N is contained in the pdf

and cdf.

Th.- mean “y and standard deviation 7y are defined as,
i

Hy =J’ an(n)dn (2.3)
ay —j:m (n - UN)Zmedn (2.4)

The mean is a measure of the central tendency and the standard deviation is
an index of the degree of variability. Another measure of central tendency is

the median, N defined as the 50% point of the distribution
Fy(H) = P(N < N) = 0.50 (2.5)

The coefficient of variation CN is defined as

CN = ON/uN (2.6)

This term, ccmmonly used in probabilistic design literature, is a non-dimensional
measure of variability.

Ultimately we wish to make statments regarding risk (or probability of
failure) which we can do if we have FN(n) and/or fN(n). But at this stage all
we have is the random sample Ni’ i = 1,k of Table 2.1. The remainder of this
chapter deals with the problem of statistics, i.e. how we take the random sample
and make probability statements for design purposes. The example used herein
is of cycles to failure data, but the analysis presented applies to any random

variable.
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2.3 Basic Statistics

The sample mean N is a measure of the central tendency

1w

21

1}
| —
" o~
=
—

[AN]

o
~

i

where k = sample size. !N is an estimate of Ly

The sample standard deviation SN is a measure of the dispersion or scatter

in the data
) 1/2
(N‘i - N) (2.7)

-

-
=

[N hs

1
k=T,
L 1

S
N 1

6 - -
N is an estimate of GN'

For the data of Table 2.1, N = 19.2 and Sy < 5.59. The sample coefficient
of variation is CN = sN/N = 0.291.

This value of CN is typical of fatigue data at relatively low lives as
illustrated in Table 2.2. The values listed give evidence of the relatively
large scatter which exists in fatigue strength data. For example, yield and
tensile strengths for a wide variety of materials are typically less than 10%
and usually about 5%.

The data of Table 2.2 also suggest that scatter is greater at lower stress
levels and longer lives. This seems to be a general rule for smooth specimen

data.

The emlirical cumulative distribution function, an estimate of FN(n), can
be established as demonstrated in Table 2.3 (the data from Table 2.1). A
smooth curve through these points is an estimate of FN(n). Examples of how

the empirical cdf is used are given in Section 2.5.
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Table 2.3

The Emprical Cumulative Distribution Function for the Data of Table 2.1

(n = 22)
Order Number, i | Ordered Data, N Empirical cdf*, F, = 1-1/2
! (i) i =
!
: | 10.3 | .023
: ! 12.3 | .068
> | 13.0 L1146
4 14.0 159
3 14.4 205
6 14.7 .250
! 15.4 .295
8 16.0 .341
? 16.0 .386
10 16.5 .432
11 17.3 477
12 17.5 .523
13 20.5 .568
L | 21.3 .614
15 i 22.2 659
16 | 23.0 305
17 ! 23.6 750
18 | 23.6 795
L | 25.7 .841
20 ‘ 27.0 .886
21 I 27.0 932
22 i 31.0 .977

*Many other forms which give similar results have been suggested, but this
one (sometimes called the "Hazen formula') seems to generally perform well
and is widelv used by engineers.
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2.4 Statistical Models lised in Fatigue

In order to make design decisions based on a set of observations of a design

factor. it is necessary to describe the distribution of that factor. In that
reqard, statistical models are usually employed. The random variable N denctina

'

cycles to failure is often described with a two parameter leifuli or

Toanormal model. A summary of these models as well as the normal anc the

three parameter Weibull is provided in Tables 2.4 through 2.7. The normal is
included in this discussion primarily for reference. The three parameter Weibull
has been used as a model for fatigue data; practical and analytical difficulties
associated with the use of this distribution are summarized later.

The lognormal and two parameter Weibull are most commonly used to describe
N. Use of the lognormal distribution has been based primarily on arguments of
mathematical expediency. However physical arguments favor the Weibull for
most material strength variables because it is an asymptotic distribution of
minima of a sample (7). If failure of a structural element is precipitated by
failure of the first of a large number of sub-elements, then the Weibull is
likely a "good" model.

Moreover, it has been pointed out by Gumbel (8) and demonstrated in Figure
2.2a that the hazard function decreases for large N which violates our physical
understanding of progressive deterioration resulting from the fatigue process.

Also mote from Figure 2.2b that for the same statistics, the Weibull gives
larger probabilities in the left tail. Use of the Weibull should produce
conservative designs relative to the lognormal.

Nevertheless, the lognormal is often much easier to use. Methods of
linear model analysis commonly used on SN data rely on a lognormal assumption
for N. Probabilistic design procedures in a lognormal format have been
developed. Furthermore, this author has found, more often than not, the log-

normal provides a better fit than the Weibull to real fatigue data.
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TABLE 2.4

4 SUMMARY OF THE NORMAL DISTRIBUTION

Orobability Jensity Function

Statistical parametars
by = Mean value of N
Oy = standard deviation of N

Distribution Function; Probability Calculations

F?‘!(n) = P(N f n ) =d

where #(+) = standard normal distribution function

(definition, e.g. Reference 14)

3
H

any specific value of N

How the Parameters are {stimated from Data

Data: N = (Ny» N, ... Nk)
Compute the sample mean N as an estimate ot My

Lomoute the sample standard deviation s, as the estimate of N

N

2-9



Table 2.3

A SUMMARY OF THE LOAHCRMAL DISTRIBUTION®

15 said to have a lognormal distribution if X = In N {or

normal distribution.

-Probability Nensity Function (base e)

] : (]n n - Lxx)h:
Fulm) = g i —“-“z—“J
“Ux

Statistical narameters

mean value of X

1}

i1
X

standard deviation of X

]}

J
X

*Distribution Function Probability talculations

or b[jOQIO"o } “;}

where ?(-) = standard normal distribution function

*See Appendix 1 for a comprehensive summary of the lognormal distribution

and its application in probabilistic design.

v



Table 2.5 (continued)

Reiationships between Parameters and *‘oments (i.e.. mean and standard deviation)

Base e
1 = U -..I. { -
Gy Tn ¥y Zln\l + Cn)
= In N (See note below)
oi =1n (1 + Cﬁ)

Q
=28
"
o
=0
-~
®
>
)
—
Ne?

Base 10

—

UX o= ]ogmuRl - zloa, (1 + CQ)

10(

oy = 0.434 Tog, (1 + Cﬁ)

o = 10luy + 1725 430}
[ (02/.434)

Cy = J]O -1

How the Parameters are Estimated from Data

Data ¥ = (N],NZ...N )

k

Let Xi = In Ni (or 1°g1ONi)

Let sample mean X be tne estimate of Uy

Let sample standarad deviation sx be the estimate of %y

Note: A useful relationship between the median N and the mean u

can be derived as

N = 1§

N

/vl o+ CN'
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Table 2.6

A SUMMARY OF THE TwO PARAMETER WEIBULL DISTRIBUTION

Distribution Function; ﬁl(n) = P(N < n)
R
Fyn) = 1 -exp L-(3) n>0

— -

Statistical Parameters

1 shape parameter

8

scale parameter

Probability Density Function

fm) = () ne)* ! e [-(2)
Relationship between Parameters and Moments

uy T Br(1/a + 1)

. /2
_ri2/a+ 1)

Cy ~ Er’-z_—“wa ¥ 1)'}_‘

where T(.) = the gamma function
. . _ ~=1.08

A useful approximation & = CN for 0.02 < CN < 2.00

How to Estimate the Parameters (Method of Moment Estimators)

Data N = (N1, NZ’ - Nk)

Compute sample mean N and sawple standard deviation of SN

Let N =(SN/ﬂ)']'08 be an estimate of x and 3 = N/T(1/a + 1) be an

estimate of 2

(Method of Moments)



Table 2.7

A SUMMARY OF THE THEE PARAMETER WEIBULL

Distribution Function: F”(n) = P(N < n)

r - \j‘
i | e
n-Y
Fu(n) =1 - exp L } ! n >
N
L J
Orobability Density Function
-~ ~ ] T ~ \-’i
) - vie - ! - al
f,(n) = %!" ‘ exn |- [" L
M ,:»\8 ) bl g
L J

Relationshin Between Parameters and “oments

y + 30(1 + 1/a)

| o
1]

oﬁ 3Ur(1 + 2/a) - T3(1 + 1/a)]

How to Estimate the Parameters
Maximum Likelihood Estimators
Ref: Manr et al (9)
Least Squares Estimators

See Sections 2.5 and 2.6
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2.5 Probability Plots; Rectification of the Distribution Function

A probability plot can be used as a basis for making a subjective judgement
on how well a set of data fit a particular distribution. Following are the
transformations on the normal, lognormal and Weibull (2 and 3 parameters) which
permit their distribution functions to be plotted as straight lines.

(a) Normal distribution; the distribution function is,

Fy(n) = [————" : “} (2.8)

where 9 is the standard normal cdf, and u and o are the mean and standard

deviations of the random variable N.

Inverting, this expression
n-u. gl (2.9)

and

5] - rlé B

$ (F) = hgjn S (2.10)
A linear relationship Y = AX + B has been established where

Y=5YF), X=n, A=1/0, B = -u/c (2.11)

(b) Lognormal distribution; the distribution function is.

Fy(n) = @[1" n- ﬂ (2.12)
(e} !
X ~

where X = In N. Here the statistical parameters are by and Iy which are the

2-15



mean and standard deviations of X = In N. Inverting,

A Tinear relationship has been developed for Q'](F) and In (n). Here

. - -] - - - ¥

Y =3 (F), X=1nN, A= 1/cx, B = -gx/cx. (2
The mean and coefficient of variation of N is,

_ 12
by = exp [ux * 50y]

= | 2y
CN .Jexp(ox) 1

(c) Weibull (2 parameter) distribution; the distribution function is,

Fu(n) = 1 - exp[-(n/8)"] (2

where o and 8 are the statistical parameters. Inverting,

-(n/8)%* = 1n (1 - F). (2.

Taking the log of both sides,

aTnn - In3)=1n[-In (1 -F)] (2

2-16
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Let,

Y =1In[-1n (1 - F)]
(2.20)
X = 1n N.
Then, Equation 2.17 becomes linear,
Y = AX + B (2.21)
where
A=a, B=-alng (2.22)
The mean and coefficient of variation of N in terms of o and 3 are
Uy = BF(1-+ 1)
N )
(2.23)
Coo= i—.925

where T(-) is the gamma function. A chart which enables convenient evaluation
of the gamma function is provided (Figure 2.3). The expression for CW is
approximate, but the error is small for 0.02 < CN < 2.00.

(d) Weibull (3 parameter) distribution; The transformation described above

for the two parameter Weibull applies directly to the three parameter mode]

when the following transformation is made

Y = In(N - v) (2.28)

The parameter v must be known in advance (see discussion below on the least

squares method).
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Using the above information for the transformation of each statistical
model, one can plot F vs. N as a straight line on rectangular paper with the
appropriate variable representation on both X and Y axes. Incidentally, this
operation is performed routinely using appropriate probability paper but
automatic plotting was used herein.

The empirical distribution function F for the example defined in Tabie 2.2
was plotted in Fgure 2.4 on "lognormal paper". Note that Fi is an estimate
of the actual cdf, FN(n). Thus, because the data tends to plot as a straight
line in Tigure 2.4, the lognormal may be a "reasonable" model for N. This
test is of course, entirely subjective.

Addressed now will be the guestion of how to determine quantitatively
which model, e.g. lognormal or Weibull, best fits the data. This issue is

discussed in Sections 2.6 and 2.7.

2.6 Comparison Test Using the Least Squares Method

Usina nrobability plots, comparison of the fit of each model can be made
analytically by (a) computing the ieast squares estimators thereby defining
the least squares line, (b) measuring the amount of deviation of the data from
the least squares line and (c) choosing that model which has the least deviation.
Using the least square method, a straight line can be fitted through these

data points (see Sec. 3.2.1). The least squares line is an estimate of

E(Y'¥) = A + 3X

Y =4 + BX (2.25)
where the least squares estimates A and B of A and B are,
. X.Y. - nXY
g = 11
- - (2.26)
/‘X'l - n(x,'
2-19
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Figure 2.4

Fatigue Data of Table 2.1 Plotted on Lognormal
Probability Paper
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A = 7 - 8%
and where X and Y are the sample means of X and Y, respectively.

The least squares line is shown for normal, lognormal, and Weibull plots
of the data of Table 2.2 in Figures 2.5, 2.6 and 2.7. The purpose of such an
analysis is to provide a test {albeit subjective) for establishing which
model provides the best fit of the F-N data. The model for which the data
seems to best plot as a straight line is the one which is the "best fit".

Such an exercise is not a'ways successful in identifying the best model
as Figures 2.5, 2.6 and 2.7 illustrate. All three models seem to oprovide
a reasonable representation. Therefore. an objective test is necessary.

A computer program (LESQUE-I) has been developed to analyze F-N data.
The output includes, (a) determinatiun of the least squares estimators A
and é, (b) the parameters of the model from the least squares line and
(¢) the sample correlation coefficient 3. The coefficient of correlation
is used as a measure of goodness fit. The sample correlation coefficient,

denoted by -, is expressed as,

P T T | (2.27)
1

with -1 < o <1 and where X and Y are the sampie means and
1 i N (2.28)

Sy has a similar expression.
c is computed for each model. If all the data fell on a straight line,
=1 (or -1). If the data indicates no linear relationship, ¢ = 0. Therefore

the model having a larger -~ suggests a tetter fit.
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Figure 2.5
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Fatigue Data of Table 2.1 Plotted on Lognornal
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Figure 2.7

Fatigue Data of Table 2.1 Plotted on Weibull
Probability Paper (Two Parameter Weibull)
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The program was used to analyze the data of Table 2.2 for the two
parameter models, normal, lognormal and Weibull. Upon examination of the results
in Table 2.8 it is seen that the values of o are relatively close, and the
lngnormal is the winner. A more discriminating index for comparison of these

data is a correlation parameter defined as

e = 4T = oF (2.29)

A much larger separation exists between these values as shown in the table.
¢ is inversely proportional to o. Thus smaller ¢ indicates a better fit, and

the lognormal is the best fit of these two parameter models.

2.7 Least Squares Analysis of the Three Parameter
Weibull -- Some Editorial Comments

A least squares analysis routine (LESQUE-IT) for the three parameter
Weibull (TPW) was developed independently. Aralysis is similar to the two
parameter case, except that the parameter y must be specified before analysis
can proceed. An iterative scheme is used for obtaining the least squares
estimator of , denoted as <. A trial value of y is chosen and -~ is computed.
The least squares estimator y is obtained by repeating the process to find
the value of v which makes -~ a maximum.

An analysis cf the data of Table 2.1 was performed. The probability
plot is given in Figure 2.8. Values of ~ and - are given in Table 2.8.

The three parameter Weibull (TPW) is freguently used as a model for cycles
to failure (e.g. Fong (16)) and the ASTM has recommended the use of the TPW(17).
The TPW is attractive because the location parameter vy defines a non-zero lower
bound on the sample space. In theory, such a model seems more realistic than
the two parameter models which permit values (albeit with small probability)

down to zero. 225




Table 2.8

Summary of Results of the Least Squares Comparison Test
on Data of Table 2.2

Correlation Coefficient | Correlation Parameter
P e =/T=-p0"

- Two Parameter Models

Norma1l .9797 0.200

Lognormal™ .9876 0.157
..... Weibull .9683 0.250

Three Parameter Model
Weibull .9908 0.135

E 3
Best fit of the two ;arameter models

L

PORER
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There are however some undesirable features of the TPW which may make its
use impractical in certain cases:
1. The TPW is a very difficult distribution to use because
a) A comnlicated iterative program is required to compute estimates of
the parameters, e.q. the maximum likelihood estimates (9).
» b) Distributions of the estimators for routine statistical operations
such as confidance intervals, testing hypotheses, etc. are difficult
if not impossible to obtain.
c) Complicated numerical analysis is required (integration or Monte Carlo)
for any reliability analysis involving any other random design factors.
2. The results given in Table 2.8 show clearly that the TPW provides a better
fit to the Table 2.1 data than the three two-parameter models studied, but
this comes as no surprise. More parameters produce a better fit. Why not

use a four-parameter model,... or five?

I

3. Figure 2.9 show the density function of the fitted TPW relative to the
data. Values of the location parameter ¥, and the smallest sample point
N(q) are as shown. Note that vy is only slightly beiow N(7)- Moreover,

recall that ; is a point below which we are absolutely certain that no

future values will fall. Examination of these values of y in Tight of the

scatter in the small sample suggests that to define Y as a lower bound is
risky to say the least (e.g., the normal model predicts that 3% of the data
will fall below v).

4. Because of the truncation of the distribution at a levei which may be too
high, use of the TPW may result in risk estimates which are too low. Thus

it is likely that the model may produce unconservative designs.
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2.2 Another {omparison Test Based on Fit to the Empirical Distribution Function

Wirsching and Carlson (10) developed an objective method for determining
which of several competing statistical models best describes the data. Their
test is based on dev- ations between the empirical and hypothesized distribution
functions.
iy Let Fi denote the empirical cdf, which is determined from the sample and
- is an estimate of the cdf of X. The cdf of the Jth model considered is Gj(x;§)
where § is the parameter as estimated by the data.

The rationale for the test is that if Gj(x;é) is the sampling distribution
of X, or a good approximation thereof, and Fi will tend to be "close to"
Gj(x;§). The W-statistic, a measure of this closeness, is based upon a form

similar to the Cramer-von Mises statistic used for goodness-of-fit tests

n
- we=1 7p2 (2.30)
n .% 1]
i=1
where
= .3) - 2.3
Dij Gj(xi,g) Fi (2.31)

Deviations associated with the W-statistic are shown in Figure 2.10.
The value of wj is computed for each of the competing statistical models.
_ The model having the smallest wj is considered to be the best fit. The W-

statistic is computed for the normal, lognormal and Weibull usinG the data of

Table 2.1.
W-STATISTIC OF DATA OF TABLE

Normal 0.0591
Lognormal 0.0491
Weibull 0.0525

2-30
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Figure 2.10

Deviations Associated with the W-Statistic

Note that the deviation associated with each X; is the vertical
distance from the top of the step of empirical cdf, F(xi)’ to
tiic hypothesized cdf Gj(xi)

2-31




EOSE

i

e

Lo 8

.l

e

This test agrees with the least Squares comparison test by ranking the
Tognormal as the best. However the two tests disagree on the normal and Weibull.

It is the opinion of the author that the W-statistic is the more powerful test.

2.9 The Lognormal Assumption

For the most part it will be assumed herein that the lognormal is the

governing distribution for not only cycles to failure data, but also for the

other fatigue design factors. see Appandix I for details of method. The

reasons for the use of the Tognormal are:

1. The Tognormal generally has been shown to provide a reasonable description
for the distribution of a wide variety of design variables. For example,
upon analysis of cycles to failure data, using methods described above,
the author has found that the lognormal consistently provides a better
fit for fatigue data than does the Weibull or normal.

2. Statistical properties of the Tognormal are well defined. All of the
theory developed for normal, e.g. confidence intervals for the mean,
apply equally to the Tognormal.

3. The lognormal is easy to use. For example if fatigue life T is a
multiplicative function of several lognormal random variables, then T
is exactly lognormal and it is a simple matter to compute failure proba-
bilities

4. Reliability formats using the logncrmal can easily accomodate design
variables having relatively large coefficients of variation. Some formats
rely on small variance assumptions for the design factors.

5. The lognormal is already widely used in the design profession. For example,
commonly used methods of linear model analysis for characterizing S-N

fatigue data implicitly assumes that cycles to failure has a loanormal

distribution (e.c., see Chapters 3 and 4).




H s
ok

A

2.10 The Use of the Tolerance Interval of Establishing a Design Value

The "tolerance interval” can be used to establish consistent and
rational design values on the safe side of data. (For a general reference,
see Natrella (11)). Design values in Mi{L-HDBK-5, for example, are based
on tolerance intervals (12). The following discussion describes the
rationale and demonstrates the operation of establishing the lower toler-
ance 1imit as a design value. Unfortunately, while this analysis can
specify a lower bound to SN data, it fails to provide a mechanism for
consideration of other factors in the fatigue equation which are sﬁbject
to uncertainty.

As an example, consider the cycles to failure data of Table 2.1.

[t is assumed that N has a lognormal distribution so that Y=log N has a
normal distribution. Values of Yi’ as well as the sample mean Y and
sample standard deviation s of Y are given in Table 2.9.

Suppose, for example, a decision has been made to establish a design
value Yp (or ND=1OYD) as the value below which it is anticipated that no
more than 1% (2=0.01) of future measurements would be expected to fall.
Figure 2.11 illustrates YD relative to the distribution of Y. The value
of YD and the corresponding ND are easily calculated, assuming that Y has

a normal distribution with mean Y and standard deviation s.

Design Value for Y:

L AL ARE R A 2

In general

YD = 7—21 s (2.32)

-

In this example

Yp = 1.27 - (2.33)(0.127) = 0.9741
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Table 2.9

Cycles to Failure of Specimens Tested at the Same Stress Level
N.

Cycles to Fa}1ure (103 cycles) | Y. = 1og]0Ni
15.4 1.19
22.2 1.35
17.3 1.24
23.6 1.37
14.4 1.16
12.3 1.09
16.5 1.22
25.7 1.41
17.5 1.24
27.0 1.43
20.5 1.31
21.3 1.33
14.0 1.15
27.0 1.43
23.0 1.36
23.6 1.37
16 9 1.20
14.7 1.17
10.3 1.01
16.0 1.20
13.0 1.11
31.0 1.49
n=22 Y=1.27

s=0.127

Pakithl

I
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Figure 2.11

Design Value for N Based on Assumption that

Y is Normal (¥, s )*

Density function

fy(y)

1 =00

Y = log N

& Cvc1es to Failure,
| l (10 C_/C1€S/

*As explained in the text, this approach gives non- -conservative design

values pecause it fails to account for the fact that Y and 5 are
themselves random variables.
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Design Value for N:

ke . bl

In general
Ny = 10" (2.33)
In this example

- 1n0.9741
ND =10

= 9.42 (10% cycles)

It is estimated that there is only a 1% chance that a specimen
selected at random would have N cycles to failure less than 9.42 thou-
cycles. Stated another way, for a large number of specimens we would
expect about 1% of them to have cycles to failure less than 9.42 thou-
cycles.

But the analysis of Figure 2.11 fails to account for the fact that

Y and s are themselves random variables. Thus, Y., as seen from Eq 2.32,

D
is a random variable, and ND from Eq. 2.33 is also a random variable.

For example, if several Tabs independently conducted this same test
on 22 specimens, each would obtain a different value of ND because of

inherent randomness in the process. Therefore, N, being a random variable

D
has its own distribution function F(ND) and it makes sense to say, for
example, that there exists a value of N.01 corresponding to F(ND) = .05.
This value denoted as Na and called a "tolerance limit" is the value above
which we may predict with 95% confidence that 99% of the population will
lie. This scheme is commonly used to establish design values (e.g.,
Reference 12).

In general, Na is the point below which we expect proportion o to

lie with confidence v.

2-36
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To find a single value Ya above which we may predict with confidence y

that a proportion o of the population will lie
Y =Y -K _s (2.34)

where Ka y is found from Table 2.10. Using the above example, n=22, y=0.95,

’

2=0.01 and K 95=3.233 from Table 2.10 (noting that p=1-a)

L 1.27 - (3.233)(0.127)

= 8594 (2.35)

and the corresponding point for N, denoted as Na for y=.95, 2=0.01 is

N, = 10% - 1008594

Nu = 7.23 thou-cycles (2.36)

Consider another example. To establish a "safe 1ife" in turbine discs,
the following criteria is used for civil engines in the UK (13). The safe life
is established at minus three standard deviations from the population mean.
Then there is a 95% confidence that the probability of failure at the safe
1ife does not exceed 1 in 750. Note that for the normal distribution, the
tail area beyond three standard deviations is 0.00135 or approximately 1 in

750.

For n=22, v=0.95 and a=.00135, the value of Ka y is found from interpo-

L]

: = 4.7 ;
lation of Table 2.10. K.00135’.95 1.20 Using values from the above example,

Ya =1.27 - (&.220(0.127)

LRl B

i =0.73€7 (2.37)
;k The "safe life" is
- ; N - Jo¥ = 100 73€7
;z | = 5.45 thou-cycles (2.38)
[f i 2-37
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TABLE 2.10 FACTORS FOR ONE-SIDED TOLERANCE LIMITS FOR NORMAL DISTRIBUTIONS *

Factars K such thet the probability is v that ot least a proportion P of the distribution will be less than
X + Ks (or greater than X ~ Ks), where X and s are estimates of the mean and the standard
deviation computed from ¢ sample size of n.

)  i-a Y =075 Y = 9.90
n 0.75 | 0.90 | 0.95 | 0.99 !0.999 0.75 } 0.90 095 | 099 ' 0.999
f | ; ! ‘ ! ‘
) : : l ; | | = ?
) ! ' ‘ : { :
3 [1.4642.501!3.152 | 4.396 5.805) 2.602 4.258 | 5.310 | 7.340 | 9.651
4 11.256 2,134 2.680 | 3.726 | 4.910 |, 1.972 | 3.187 . 3.957 | 5.437 | 7.128
5 11.152: 1.961 | 2.463 | 3.421 | 4.507 | 1.698 | 2.742 | 3.400 | 4.666  6.112
| | | | | | ;’
| } N i ! ' 1
6 | 1.087 | 1.860 i 2.336 | 3.243 | 4.273 i1.540 | 2.494 ' 3.091 | 4.242  5.536
7 |1.043 1 1.791 | 2.250 | 3.126 | 4.118 || 1.435 l 2.333! 2.8 3.972| 5.201
8 {1.010|1.740 2.190 | 3.042:4.008 | 1.360 , 2.219| 2.755 ; 3.783 | 4.955
9 |0.9841.702, 2.141 | 2.977 1 3.924 | 1.302; 2.133 ' 2.649 | 3.641 | 4.772
10 10.964 | 1.671!2.103 | 2.927 1 3.858 ;, 1.257 | 2.065| 2.368 | 3.532. 4.629
11 10.947 | 1.646 | 2.073 | 2.885 I 3.804 | 1.219! 2.012| 2.503 | 3.444 ' 4515
12 10.93311.624 2048 2.851 ' 3.760 © 1.183  1.966 | 2.448 | 3.371 | 4.420
13 10.919 . 1.606°2.026 2822 3.722 " 1.162 1.928 2.403, 3.310, 4.34I
14 10.909 : 1.591 1 2.007 | 2.796 . 3.690 | 1.139 , 1.895| 2.363; 3.257; 4.274
15 10.899 1577 1.991:2.776  3.661 ' 1.119 1.866 2.329| 3.212 4215
I N B | | | |
16 [0.891 | 1.566 : 1.977 2.756 3.637 . 1.101, 1.842  2.209| 3.172| 4.164
17 10.883 | 1.554 © 1.964 ' 2.739 ; 3.615 1| 1.085 1.820 2.272! 3.136: 4.118
18 10.876 1.544 1 1.951 '2.723 3.595 1.071 . 1.800 ' 2.249 ' 3.106 = 4.07%
19 1087011536 1.942 2.710 ' 3.577 | 1.058 1.781; 2.228 ' 3.078 | 4.041
20 |0.865 ' 1.528 | 1.933 | 2.697 ' 3.561 | 1.046 | 1.765 & 2.208 | 3.052' 4.009
5 | | | 1 / | |
21 | 0.859 | 1.520 | 1.923 | 2.686 : 3.545 | 1.035 1.750 & 2.190  3.028 | 3.979
22 10854, 1.514 | 1.916 ' 2.675 3,532 | 1.025  1.736, 2.174 | 3.007 | 3.952
B 23 [0.849 1.508 ' 1.907 | 2.665 : 3.520 ; 1.01€ . 1.724  2.159 : 2.987 , 3.927
24 |0.845 1.502 | 1.901 | 2.656  3.509 | 1.007 | 1.7121 2.145 | 2.969 | 3.904
25 | 0.842 | 1.496 | 1.895 | 2.647 ' 3.497 |, 0.999 | 1.702 | 2.132 | 2.952 | 3.882
! | 1 N ' i !
: | I A | ;
- 30 [0.825' 1.475 1.869 : 2.613 ' 3.454 || 0.966 | 1.657 l 2.080 ; 2.884  3.794
B 35 | 0.812 1.458 18492588 3.421 | 0.942 1.623| 2.041, 2.88 ‘ 3.730
40 |0.803 ; 1.445 1.834 2.563.3.395 | 0923 1598 | 2.010 ' 2.793' 3.679
45 | 0.795 1.4351.821 2552 3.3751 0.908| 1.577; 1.986 | 2.762 3.638
50 10.788  1.426, 1.81112.538 13.358 | 0.894  1.560 , 1.965 2.735 ) 3.604
| ‘ | i f § ;

Adapted by permission from [ nduatrial Quality Conteol, Vol. XIV, No. 10, April 1958, from articie entitlod ""Tables for Ona-Sided
Statstical Tolerance Limita” by U. J Licherman,

*Natrella, M. G., Experimental Statistics, NBS Handbook 91, 1963
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TABLE 2.10(Continved). FACTORS FOR ONE-SIDED TOLERANCE LIMITS FOR
NORMAL DISTRIBUTIONS*
“I'lie two staered vatues have been corrected to the vaolues glven by D. B. Owen in **Factors for One-Sided ‘Toterance Limits and fur Variables

Sunp' me Plans”, Sandin Corporation Monograph SCR-607, available from the Clearing House lor Federal Scientific and Technical Informatica.
1.5, Depnre:nent of Comucree, Springfield, Vo, 22151 The Owen Tables tndicate other crrors in the table Lelow, not exceeding 4 in the last digit.

Yi-“ v = 0.95 v = 0.99
. p ! 7 ? i | }
- . 0.75 ‘1 0.90 1 0.95 " 0.99 ‘30.999’ 075 | 0.90 0.95 | 099 | 0.999
: : ' i
i T
3 | 3.804 | 6.158 | 7.655 10.552 13.857 - — T
a | 2.619|4.163 | 5.145 | 7.042 | 9.215 - - - - —
5 | 2.149 1 3.407 | 4.202 | 5.741 | 7.501 - — — - —_
‘6 11.895|3.006|3.707 | 5.062 | 6.612 | 2.849 | 4.408 5.409 7.334' 9.550°
7 1732|2755 | 3.399 | 4.641 | 6.061 || 2.490 | 3.856 | 4.730 | 6.411 ) 8.348
s | 16172582 3.188 | 4.353 | 5.686 | 2.252 | 3.496 | 4.287 | 5.8ll | 7.566
o | 1532|2454 (3031 ]4.143! 5414 2085 3242 3.971 538! 7.014
10 |1.465|2.355| 2.911|3.981 | 5.203 %+ 1.954| 3.048| 3.739 | 5.075 | 6.603
_ 11 1411122751 2815(3.852|5.036 1 1.854| 2.897 3.557 | 4.8285; 6.284
- 12 [1.266 | 2.210 | 2.736 | 3.747 | 4.900 | 1.771  2.773 3.4105 4.633 . 6.032
13 11329 12155 | 2.670 | 3.659 | 4.787 | 1.702 | 2.677 | 3.29¢  4.472: 5.826
14 | 1.296 | 2.108 | 2.614 | 3.585 | 4.690 ‘ 1.645| 2.592 ' 3.189 | 4.336  5.651
f 15 |1.268 | 2.068 | 2.566 | 3.520 | 4.607 | 1.59 2.521 , 3.102 ; 4.224 | 5.507
| s * ‘
16 11.24212.032|2.523 |3.463 14.534 | 1.553 | "2.438 | 3.0281 4.124 . 5.374
- 17 | 1.220 | 2.001 | 2.486 | 3.415 l 44711 1.5141 2.405 2962 4.038 5.268
18 | 1.20011.974 | 2.453 | 3.370 | 4.415 | 1.481 | 2.357 , 2.906  3.96l . 5.167
! 19 11.183]1.949|2.423 | 3.331 1 4364 1 1.450 | 2.315' 2.855 6 3.893' 5.078
= 20 | 1.167 | 1.926 | 2.396 | 3.295 ‘ 4.319 1 1.424| 2.275! 2.807 . 3.832 1 5.003
- ! i | , i
21 |1.15211.905 | 2.371 | 3.262 | 4.276 | 1.397 2.241 | 2.768 | 3.716  4.932
22 | 1.138 | 1.887 | 2.350 | 3.233 ' 4.238 & 1.376 | 2.208: 2.729 , 3.727 4.866
23 |1.126 | 1.869 | 2.329 | 3.206 ; 4.204 | 1.355 - 2.179 1 2.693 , 3.680 . 4.806
24 | 1.114 | 1.853 | 2.309 | 3.181 1 4.171 | 1.336 2.154  2.663 | 3.638 ' 4.75
25 |1.103 | 1.838 | 2.292 | 3.158 ] 4.143 | 1.319 ; 2.129 , 2.632  3.601  4.706
! { ; { I i
20 | 1.059 | 1.778 | 2.220 | 3.064 4.022 | 1.209 | 2.029| 2.516 3.446, 4.508
35 |1.025 | 1.732 | 2.166 : 2.994 1 3.934 | 1.195 1.957 . 2.431 . 3.334 | 4.364
40 |0.999 | 1.697 | 2.126 | 2.941 | 3.866 | 1.154; 1.902 2.365| 3.250  4.25
as |0.978 ! 1.669 | 2.092 | 2.897 | 3.811 , 1.122 1.857; 2.313: 3.181 | 4.168
50 | 0.961 ' 1.646 ' 2.065 ' 2.863  3.766 1 1.096 1.821, 2.260* 3.124 ' 4.096

*Narrella, M. G., Experimental Statistics, NBS Handbook 91, 1963
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2.11 The Scatter Factor Based on the Tolerance Interval

The "scatter factor" is a term which has been used to describe the varia-

bility in cycles to failure data for purposes of predicting a safe life. It is

. analagous to a safety factor. For example, if N is the median cycles to failure

at a given stress level, a "design value" NJ=N/: where 7 is a scatter factor

R

associated with an appropriate tail probability a.

A

As an example, consider the problem described previously, the data of

given in Table 2.9. The design value Na

which is

is defined as the point above which at
_ least P=99% (a=1%) of the values are expected to fall with confidence of v=95%.

.... That value has been established as Na=7.23 thou-cycles. The median cycles to

; failure is _
: N=10"=10"-&
- = 18.6 thou-cycles (2.39)
E\ and thus the scatter factor is
= = N/N = 18.6/7.23
. (2.40)
~ =2.58

The general form of the scatter factor can be derived by substituting
»

the expressions of N and N, in terms of the statistics for Y. Thus

T = &/Nq = 107/010077K, 8)y (2.41)

2.12 The Use of the Predgiction Interval in Establishing a Design Value

consiuer a random variable Y which is normally distributed with

mean and standard deviation u and o (as the above example in Sec 2.10 and

2.11) . A random samplie of size n is taken, and the sample mean Y and sample

standard deviation,s are computed.
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It is required to make probability predictions about future observations.
Following is a derivation of the prediction interval and a discussion of how

it can be used to establish design values as well as provide statistics for

reliability analysis (see References 14 and 15).

wl

Consider the distribution of (Y0 - Y) where YO is a random variable

denoting a future observation and Y is the sample mean. Yo and Y are normally

EUN A

distributed and have mean and standard deviation of (u,o) and (u,0/vN) res-
pectively. Furthermore Y0 and Y are independent in a probability sense because
K Y is derived from the first n observations and Yo corresponds to a future

observation. Hence (Yo - Y) is normally distributed with mean zero and standard

g' = cJ; + - (2.42)

deviation n

Note that (n-l)szloz has a XZ distribution with (n-1) degrees of freedom.

. Thus it follows that Y, -V
5
= 1
sv 1 + 5
has a student's t distribution with (n-1) degrees of freedom. (14)
A rational method of establishing a design value can be based on a prediction
4 interval. Let YD denote the value below which we expect the next observation
f to fall with probability x. Then
Yy = Y - G(a,n)s (2.43)
where
) - 1 +1
G(LL,") = t)t,',n'] v 1+ n
where ta n-1 is the Students t variate with n - 1 degrees of freedom at proba-

bility level o

*
This is a simplified version of the Equivalent Prediction Interval concept
developed by Wirsching and Hsieh (15): See also Section 4.7.

2-41

e e o —————



"

AT R ELSILRU L L

e cb “Jl

fASS R L A

i€ m; e

TR R TRt @ e Y

3

The function G is shown in Fig. 2.12 forx= .01 and .05. As n+=> the t
variate approaches the standard normal z variate (also shown on Fig. 2.12);
the radial term approaches one. Thus G approaches z as shown.

As an example, consider the data of Table 2.9; Y = 1.27 and s = 0.127.
Find the lower 1% prediction interval. Forn = 22, G (.01, 22) = 2.57.
Thus

-
[

1.27 - 2.57 (.127)
0.943

The design value of cycles to failure N is given as,

ND = 100'943 = 8.77 (103 cycles)

The prediction interval also provides a mechanism for specifying the mean
and standard deviation for a reliability approach. Use of Y and s directly in
a reliability format may lead to significant errors for small sample sizes be-
cause Y and s are only estimates of the populationu and o. The uncertainity
in the estimates can be accounted for by expanding the sample standard deviation
S.

An alternative expression for the design value is

YD =Y - Za % (2.44)

where 9y is defined as the "equivalent standard deviation". Comparing Eq 2.43
and 2.44, it follows that

g, = g(n,a)s (2.45)

where
/ ]
-1 1+H/Za

= G(n,a) / Za

g(n 9(1) = ta;n

Values of G(n,x) can be established from Fig. 2.12., wrich i< then divided bty 2

tn Ahtain afn y)
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The value s, can be interpreted as the expanded standard deviation to

account for the fact that the estimates Y and s are random variables. For use

in reliability analysis one would state that Y has normal distribution with a
mean and standard deviation (V, co)
For the data of Table 2.9 and Figure 2.12

g(.01,22) G(.01,22)/2_01

2.57/2.33 = 1.10

Thus, o, = 1.10 (0.127) = 0.140
Thus we could state in a reliability format that Y- N(1.27, 0.140).
It is necessary in this approach to specify the "reference value" of a. As a

general recommendation, the value of a = 0.01 should provide reasonable results.

2.13 How to Establish a Design Value: Summary Comments

Given a random sample of data, it is often required to specify a design
value on the safe side of that data. If the term is a "strength" varaible
(i.e. design becomes dangerous if variable gets too small), then the design
value should be on the left side. On the other hand, if the term is a "stress"”
variable (i.e. design becomes dangerous if the variable gets too large) then

the design value should be on the right side. Thus YD =Y + Ks.

There are a number of schemes currently used in industry to specify design
values for a "strength" variable. These methods are illustrated in Figure 2.13
using fatigue data presented in Table 2.11. A summary of the methods and com-
puted values are presented in Table 2.12.

It is interesting to compare the design values with the actual population
from which the data is sampled. This particular sample of size n = 10 had
values larger than average. Thus the lower 1% vaiue (No. 5), based on the

as.Jmption that uy = Y and oy =S and using normal probabilities, was too high.
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Table 2.11

Data for Example to Illustrate How Design Values

A

are Established

A

This data on Y was actually sampled from a normal distribution having mean

Hy = 1.25 and standard deviatirn ay = 0.12.

‘\ t'! o

Y. = logyn,N; Cycles_to Failure, N,
i EI0T (103 Cycles)

1.298 19.86
1.351 22.46
1.328 21.30
- 1.312 20.54
- 1.095 12.46
. 1.415 25.98
E 1.364 23.14
1.232 17.07
i 1.112 - 12.95
- 1.292 19.58
y Sample Mean, Y = 1.280

- Sample Std. Dev., s = .1047




SR

Table 2.12

An Example of the Various Methods to Establish Design Values
(Basic Assumption: Y is Normally Distributed)

YD =Y - Ks
~ Method Value of K Design Value, YD
2. Smallest Value in Sample 1.095
3. Smallest Value Minus Reasonable ' 1.050
Distance (choice arbitrary)
4. Mean - KS i E:% 10:966
5. Lower 1%; assumes that uy = Y ,
and oy = s Y 2.33 1.036
~ i 6. Lower 1% Prediction Interval 2.90 ? 0.976
7. Lower Tolerance Limit f
3.98 ' 0.863
= .95 =
= % !
]

IRA & L PR
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The message here is that the statistical distribution of ¥ and s should be
accountad for in establishing the design value. The prediction interval
(No. 6) and tolerance interval (No. 7) are the only methods which do this.

In summary it is recommended that the prediction interval or tolerance
interval be used to defihe design values. The prediction interval can easily
be used to provide the data needed for reliability analysis. Tolerance
intervals are commonly used, but they tend to produce conservative values as

suggested in Fig. 2.13.
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Chapte: 3 ANALYSIS OF STRAIN-LIFE DATA: THE LEAST SQUARES LINE

3.1 Preliminary Considerations

Statistical analyses of data from a single random variable for the
purpose of establishing a design value was described in Chapter 2. Examples
of analyses of cycles to failure data at singia stress levels were presented.
But generally, it is required to establish N as a function of S. Therefore,
tests are performed at various stress levels.

Typical fatigue data might consist ¢f inelastic strain range versus N

cycies to failure as illustrated in Figure 3.1. It is necessary to

characterize this data for design purposes. Two basic methods are employed:
a. The common approach is to define a design curve on the safe (lower)
side of the data.
b. A statistical summary can be presenied for a reliability analysis

or probabilistic design approach.

A key to strain-life data analysis is the determination of the least
squares line, an estimate of the median value of N for a given strain (or
stress) level. This chapter discusses the least squares line and some of
its characteristics. Chapters 5 and 6 then show how to establish design

values from strain-1ife data.

3.2 The Least Squares Line (Median Curve Through Strain-Life Data)

3.2.1 Introductian

Methods for analyzing strain-life Ac-N (or stress-life, S-N) data are
discussed in this chapter and in the next two. The goal of such data
analysis is to =~vide a characterization of the Ae-N relationship in a
form suitable for design purposes. General references on the least

squares method include References 1, 2 and 3.
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3.2.2 Median Life Curve

Consider a constant amplitude strain controlled fatigue test in which
pairs of data (Aai, Ni) i=1, n are collected. Ni are the cycles to failure

associated with strain range .:., and n is the sample size.

5 o 1s the

independent (or controlled) variable and N is the dependent variable. Data
from a hypothetical test are shown in Fig. 3.1 plotted on log-log paper.

Methods of basic linear model analysis are typically used to analy:ze
fatigue data, and these methods will be used herein to describe life
relationships.

Consider first a log transformation of variables. Let

Y=1og N X=logiace ). (3.2)
Thus X is the independent variable, Y is the dependent variable.

Cieariy there is no functional relationship between Y and X, but there
does seem to be some kind of relation. It will be assumed that the data
(e.g. Fig. 3.1) is a random sample from the following model

Y(x)=Y0(x) +§ (3.3)
in which § is a normally distributed random variable with mean equal to zero
and standard deviation equal to o and where

Yo(x) = a + bx (3.4)
where a and b are constants. Thus for a specified X, Y is a random variable
normally distributed having mean and standard deviation

E(Y] X)

Y0 = a + bx (3.5)

o(¥X) =0 (3.6)

Note the assumption that o 1is a constant, not a function of X. The line

Y0 = a + bx, being the mean of Y, will pass through "the "center" of the data.
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Because Y is rormally distriblted, N 7giy

Thus the median of N, denoted as N, is given by Y0=1og N. In terms of the

6rigina1 coordinates, the Y Tline can be written as

Ae = CN> (3.7a)
in which it follows from the above definitions that
a=-+1ogC b= 1/z (3.7b)

3.2.3 The Least Squares Line

The parameters a and b (and thus C andz ) and o are not known in advance

and must be estimated from the data @e 5 Ni)’ i=1,n. Equation 3.2 1s ysed

to translate the data into (xi, Yi) i=1,n.

Using the method uof least squares, a, b, and o 2re estimated by a, b,
and s respectively (3),

A n -_— — n =2
b= (X, - XY, -V)/ I (X, - %) (3.8)
i=1 ] ! i=1 ]
a=V-bxX (3.9)
1.0 - 2
2--——---— -
T G0y - (@ b)) (3.10)

where X and Y are the sample means of X and Y respectively. Because each Yi

is a random variable, the estimates a, b, and s are also random variables.

The "best fit" Jine
Y = a+ bX (3.11)

is called the least squares line. ? is the estimate of Yo, i.e. the mean of Y

given X.

As an example, the PP strainrange data for AIS! 316 presented by

Saltsman and Halford (4), and shown in Fig. 3.2, will be analyzed. This

data is presented in Table 3.1, along with statistics associated with this
* » * - [ 3 ' K] - 3

PP strainrance is *orsile nlasticitv reversad by conrressive plasticity;
no creep.
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Table 3.1
Statistical Analysis of AISI 316 PP Data

[after Saltsman and Halford (4)]

SR AR

Sample Size n=7

%j Strain ange Cycles tq Failure Xi=1og(Ag)i Yi=1og Ni
= (ae)i Ni
%- .00424 1700 -2.373 3.230
"3 .00105 35600 -2.979 4.551
E' .03508 120 -1.455 2.079
E .03496 68 -1.564 1.832
' .00466 2333 -2.332 3.368
.02066 116 -1.685 2.064
.02360 146 -1.627 2.164
Sampie Mean of X Sample Mea: of Y
1 X = -1.986 Y = 2.746
! Estimate of a Estimate of b
' a = -.6530 b= -1.711

Other Statistics
s =0.1427
) x? = 29.663
s 7 L od - ()% = 203

Sy = 0.5416




Equations 3.8, 2.9 and 3.10 can be used to obtain 3, 8, and s, the

estimates of a, b, and ¢, respectively.

~

a = -0.6530 b

!}

-1.7108 s = 0.1427 (3.12)

Least squares estimators r and C are obtained by inverting Equation 3.7b and

-

solving for ¢ and C.

AA

= 1/b = 0.5845 ¢ =100 - a5 (3.13)

.li.‘l"j“ﬁlfl ;!.'!‘ L ‘l;\ o

B L

Least squares estimators a and b are obtained from Equation 3.7b

0.5845

[
—d
~
o

]

z
(3.13)
4152

(@ P4
o~
o

The least squares line, Ae = CN® s plotted on Fig. 3.2. N is defined as the
estimate of the median N.

Note that (a) Y given X is normal and (b) the least squares line is the
estimate of the mean of Y| X* Therefore, it follows that (a) N|ae is lognormal
and (b) the least squares line, N, is the estimate of the median of MN|ae.

3.2.4 An Alternate Form

The form of the Ae-N relationship given above is most commonly used in

oo "“W‘""wm'“”‘ww*m o L e b ] “W’ i

SRP literature. However, for probabilistic design purposes, it is more

4
4
3

convenient to express the "Yo line" (Equation 3.7) as
M= K(ae)" (3.14)
Comparing Equations 3.7 and 3.14 the constants K and m in terms of C and ¢

are
K=c /5 m= 1/ (3.15)

The transformation to linear form involves the substitutions,
Y=1logde X=logK a=1logK b=m (3.16)

The least squares estimates of K and m are

~

K =10° m=b (3.17)
*
Y'X means the random variable Y given a specific value of the random variable X.
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For the example of Fig. 3.2

K = .2223 m= -1.7108 (3.18)
The estimate of the median curve is
N = 0.222(ze) ] (3.19)

3.3 Statistical Distribution of the Least Squares Estimators, a and b

The estimators ; and B wiil have a bivariate normal distribution. The
expected values are,
E(a) = a E(b) = b (3.20)
and the covariance matrix is
AN _ 2 ; 2 ; 2
0,.2 2
-(R/s)) /s,
where ¥ is the sample mean of X and
2 =1 -2
SX FZ(Xi'X) (3-22)

=(-:‘- 2"3 )- )’(2
EXAMPLE: Consider the PP strainrange data of Saltsman and Halford (4).
Substitutina appropriate values from Table 3.1 into Equation 3.21, including
the assumption that s =c%,it follows that an estimate of C(;,B) is
cz.b) = [0.082  0.020 (3.23)
0.020 0.010
The variance of a and B are respectively 0.042 and 0.010 (standard deviations

0.205 and 0.100). The covariance of a and b of 0.020 indicates that a and b

are correlated. The correlation coefficient

3-8




5 = ——ﬁ—lc°;3:b (3.24)
ab
. . (‘285()’2(8.10) - 0.976 (3.25)
5; There exists a high degree or correlation between a and b. This
21‘ dependency leads to operational difficulties when we attempt to present
;; fatigue data summaries in a format useful for designers. Practical
. representations of these design factors will be the subject of Chapter 4.
;
E
J 3.4 Confidence Intervals for the Parameters and the Least Squares Line
% Because 3 and 6 are estimates of a and b, they are random variables.
E For example, suppose that a sample of size n=7 of AISI 316 PP data were
g collected in addition to that of Fig. 3.2. Because it is a random sample,
i\ a different value of a and b and a different least squares line will be
E obtained. Indeed each time a sample of size n is chosen, a different‘;, 5
g and therefore ;0 will result. This point is important because the uncer-
i tainty in a and b has a significant effect on risk estimates.
g The consequences of having 3 and b as correlated random variables is

reflected in the character of the confidence intervals of the least squares

line. Summarized in this section is how to compute confidence intervals

for K and m as well as for Yo(x).

The AISI 316 PP data given in Fig. 3.2 and Table 3.1 is used as an
example. Table 3.1 summarizes basic statistical analyses.

The 1- o confidence limits for a and b are (3)

~ . -2
(For a) 2+ Yy /2n-2 Sl‘ﬁ L X2 (3.26)
X

~

(For b) b+t 2l 23n-2 s/(/isx) (3.27)
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where t;/Z-n

sn-

> is the 100 ~/2 percentage point of Student's distribution
with n-2 degrees of freedom and using the data of Table 3.1, the 99%

- confidence limits (x = .01) are computed as follows

Because K and m are monotonic functions of a and b, the confidence limits

can be evaluated by direct substitution. Results are given in Table 3.2.

. t go5.5 = 4-032

i (For a) -.6530 + (4.032)(.1427)];_ + %_7_;73%%

; = -.6530 + .8265

' (-1.479, +0.1735) (3.28)
4 (For b) -1.711 + (4.032)(.1427)/}/7(.5416) ]

% = -1.711+ .401

. (-2.111, -1.310) (3.29)
i The 99% confidence 1imits can be described by the probability statement,

! P(-1.479 < a < 0.1735) = .99 (3.30)
i P(-2.111 < a < -1.310) = .99 (3.31)
:

4

TabTe 3.2
Confidence Limits for K and m (AISI 316 PP Data)
Least Squares Estimate 99% Confidence Limits
Lower Upper
m 1.7 -2.1M -1.310
k 0.223 .0331 1.491

Because much of the work in SRP has used the form of Ae=C(Ae)C it is
of interest to consider the confidence Timits of C and & for the AISI 316

PP data. Results are summarized in Table 3.3.

Confidence 1imits on Yo’ the mean of Y given X, are computed using

. 3
Yottty 2.n-2 S Ly 5"—7?- (3.32)
nSx
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For the AISI 316 PP strain data of Fig. 3.2 and Table 3.1, the 99% con-

fidence intervals on Y0 are plotted in Fig. 3.3.

A

= Table 3.3
gi‘ Confidence Limits for ¢ and ¢ (AISI 316 PP Data)
EE Least Squares Estimate 99% Confidence Limits
- Lower Upper
4 -.585 -.437 -.763
* *
c 415 .0743 1.208

*Values obtained from Equation 3.13 by noting that the correlation
coefficient between 3 and B p=-1. Upper Timit on a was combined
with lower on b and vice versa.

The purpose of the plot of Fig. 3.3 is to illustrate the fact that when
dealing with a phenomena that has as much scatter as fatigue, sample sizes

larger than n=7 are required for a reliable prediction of_the lTeast squares

i
E

line. Assuming that identical statistics (;, B, S, Y,/Ex) resulted from
experiments having different sample sizes, an illustration of the effect
of sample size can be provided. Fig. 3.4 shows 99% confidence intervals
for Y, for n=7, 15 and 30.

For design purposes however, it is customary not to use the least
squares curve to characterize the data, but rather a curve on the safe

(lower) side of the data. This approach will be pursued in Chapter 4.
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CHAPTER 4 STRAIN-LIFE DATA ANALYSIS: GENERAL CONSIDERATIONS

4.1 General Considerations for Design

The general problem of analysis of fatigue data is illustrated by Figure
4.1. The data typically will be curved even on a log-log plot and will have
a scatter (standard deviation of N given Ae, denoted as N|Ae) which increases
with smaller Ae.

A median curve can be established through the data, typically using a
least squares method. But the median curve only defines the 50% point. A
low risk design would require definition of a design curve on the cafe side
of the data as shown in Figure 4.1.

The design curve of Figure 4.1, denoted as ND’ is defined as a curve
below which one would expect the next data point to fall with probability a.
Given that N is a random variable denoting cycles to failure, ND can be

defined by the probability statement

PLN<Ny |2€] = o (4.1)

for any ce. This left tail area, a, is the estimate of the fraction of
points that would be expected to fall below ND' It can also be thought of
as a "risk level” although it would be equal to the probability of failure
only in the case where all other design factors, including strain history,
were exactly known and the factor of safety equal one. In practice,

the designer must select the value of a. Typical values which have

been used range from o = 0.1% to 5%.

4-1
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An I1lustration of a Design Curve Based on Risk Level

STRAIN, Ae
(or STRESS)

J i

| PDF of Niae

,\{

DESIGN
CURVE, N

(log scale)

MEDIAN ﬂ GIVEN Ae

k\\\ 1. PDF of Njae
~_

-
5?“” [ Tt - -

(log scale)

CYCLES TO FAILURE, N

42



AT

1

An approach using methods of modern probabilistic design theory does
not require a design curve. However statistics of the design parameters
must be given. For example, it will be shown later for a probabilistic
o fatigue design approach that required information from the linear Az-N
N model, N=K(ac)" includes the value of mand the median and coefficient of
variation of K.

In summary, two approaches to fatigue design can be used. Fach requires
a different way of characterizing Ac-N data but both require statistical

analyses.

1. A deterministic approach in which a design curve (Ae-N) is specified.

A1l other design factors are treated as deterministic or constant.

2. A probabilistic approach in which statistics of the model parameters

are stated. A1l design factors are treated as random variables.

A

Both methods are described herein. This chapter summarizes the analysis
for the simple linear model case. The following chapter explores this
problem for the more difficult non-linear problem illustrated in Figure 4.1

in which the scatter is a function of strain level,

4.2 Definition of a Failure Trajectory

L R LB 1

The concept of a failure trajectory has been very useful in analyzing

fatigue data for design purposes. In Figure 4.2, the star represents a specimen

At ]

which has failed. The dashed lines (failure trajectories) are drawn through
the point according to some predefined rule. Typically in this case the

failure trajectories are parallel to the median curve. It is argued that the
curve defines the cycles to failure of that specimen if it had been tested at

a different stress level. For example, a specimen which is "weak" at a high

stress level would also be weak at a Tow stress level.

4-3
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The assumption that failure trajectories accurately describe material be-
havior leads to many useful statistical descriptions that otherwise would not
be possible. For example we can construct the distribution of 2Ac given N as
shown in Figure 4.2. The design curve defines the lower a% of failures in both
directions. This statement cannot be made without the failure trajectory assump-
tion.

As will be demonstrated in the following sections, not always will this

concept be employed, but often it can be quite useful.

4.3 Linear Life Relationships

[t is assumed in this chapter that the strain-1ife relationship will be

described by the basic linear model (Equation 3.3)
Y=a+bx+$§ (4.2)

where § is a random variable having mean value of zero and standard deviation

o. Let
Y=log N x=log S a=log K m=b (4.3)

Define the random variable K0 by the relation

5§ = log Ko (4.4)

Combining Equations 4.2, 4.3, and 4.4 yields,

N = KOK(AJ" (4.5)

4-5
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Because § ~ N(0,0), it follows that Ko is a lognormally distributed

random variable. The median and coefficient of variation of K0 are for base

10 logs, e
Ko = 1] C = /]0(0' /0.434) -1

K

(4.6)
0

(See Appendix 1 for a description of the lognormal distribution.)

Note that because KO is a random variable, N is a random variable. The

-

median life, ﬁ is Equation 4.5 with the median value of KO; K°=1. Thus
N = K(ae)™ (4.7)

In chapter 3 we saw how K ard m are estimated by the least squares

estimators K and m and that the least squares line

~

N o= K(ae)™ (4.8)

is an estimate of the median curve N.
For example in the strainrange partitioning (SRP) method, there are four
such strain-life curves depending upon the strain type. See Manson, Hal-

ford, and Hirschberg (1), or Saltsman and Halford (2) for details on SRP.

!pp = G(As)Y tensile plasticity, compressive plasticity
Ncp = H(Ae)n tensile creep, compressive plasticity

Npc = K(ae)P tensile plasticity, compressive creep

NCc = M(Ae)g tensile creep, compressive creep

Least squares analysis in each of the four cases can be performed as

described above. The median curve for each is simply the relationship with

the least squares estimators.

4-6
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4.4 Uncertainties in the Linear Model

Upon employing the basic linear model with the least squares line for
design, it is important to note that uncertainties stem from four sources (3)
1. Basic scatter inherent in the material behavior, as described by =
2. The sample standard deviation, s, and estimate of o, is a random
variable.
3. The estimate of a is a, a random variable.
4. The estimate of b is b, a random variable and is correlated to a.
As the sample size n becomes large, a-+a, b>b and 9°+Y°, and s approaches
o. For all practical purposes 3, G and s could be treated as constants fcr
large n (typically the assumption would be reasonable for n>50). However,
because of the expense associated with fatigue testing, sample sizes will
generally be small. Therefore in general it is necessary to give full con-
sideration to statistical distributions of these estimators.
Uncertainties in the estimators significantly complicate the develop-
ment of a model suitable for design purposes. In the case that the data
can be described by a linear model, the equivalent prediction interval
described in this chapter provides an approximate solution.
This chapter summarizes statistical methods of analysis commonly used

for linear data and provides commentary regarding the performance of each.

4.5 lLower 20 or 30 Limits

It is common practice to establish a design curve as a 1ine which is
parallel to the median Ae-N curve and which lies a distance typically 2 or
3o to the left of the median curve. The value o is taken to be equal to
the sample standard deviation, s of Equation 3.10. Figure 4.3 illustrates
a 20 curve, denoted as N

20°
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- f Use of such a criterion implies a risk Tevel « as follows:

*
Distance to the left of the Median Implied risk level, o
20 0.0227
30 0.00135

*Note that o=standard deviation of Y=log N

|{_| Wy l\l luilj‘f Lan |§ [E B

This approach to a design curve can produce inconsistent levels of risk.

DL O

Some of the pitfalls are illustrated in the following discussion and example.
On the basis of the available data, the statistical distribution

of the next observation Y is described using the concept of prediction

interval. The distribution of Y|X is Student's t with n-2 degrees of

freedom: To compute probabilities of Y for a given X, the 100 o% lower

prediction interval can be used (7,8)

-~ ~ /—' - 2
a = P[Y(x) < (a + bx) - t]—a;n-Z s ¢/1%Q_+ gﬁ;xg ] 4.10
X

In Equations 4.10, s accounts for the scatter inherent in the physical

v g VTR g Sy e e e

phenomena, the term with the radical sign accounts for uncertainty in a
and b, and the use of the Student's t distribution (rather than the normal)
accounts for the uncertainty in s.

As an example, letting o = 0.227, the same risk as implied by 20 curve

results in the Ny curve as shown in Figure 4.3. This curve given by

I+n | (x-X
TogN =Y ==t .,2°% i Lﬁg;)- 4.11

*
e.g. See Reference 3 or 8.
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is obtained from Equation 4.10. The Na curve is interpreted as follows.

On the basis of the available data, there is 2.27% chance that the next
point (Y,X) selected would fall below this curve. This illustration demon-
strates that (a) the distribution of Y|X is a function of X, (b) because

N3 Ties below N20 the use of the 2z criterion results in risks which are
higher than advertised.

The 30 criterion is illustrateg in Figure 4.4. The curve Na is for
«=0.00135. Again we see a significant difference between the N30 curve
which implies a risk of a, and the curve Na which actually defines «.

However, as n + =, 3 - a, 8 - b, s + 0, the estimators being con-
sistent. Moreover, t]-a;n-z >z, and the radical term of Equation 4.11
+ 1. Therefore, for large n, Na approaches NZo' In summary, the diffar-
ence in Na and N20 of Fiaure 4.3 (and na and N30 of Fiqure 4.4) is due to
the uncertainty in the estimators.

Another way of looking at the problem is to consider the actual risk
level o as a function of sample size n for the 2o and 30 curves. The
curves shown in Figure 4.5 illustrate that the actual risk level depends
upon the sample size and can substantially differ from the implied risk
level.

In summary, a 20 or 30 criterion can produce consistent probability
Tevels in Ac-N data only if sample sizes are sufficiently large. As a rule
of thumb, a large sample would typically be n > 50. For smaller samples,
due consideration should be given to the fact that a, B and s are random

variables. Proposed in Sections 4.7 and 4.8 are models for consistent

description of Ac-N data.
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4.6 Implied Risk in Fatique Design Curves of the ASME
Boiler and Pressure Vessel Code

Fatigue evaluation methods for pressure vessels are included in Section
III, Division I and Section VIII, Division 2 of the ASME Boiler and Pressure
Vessel Code (4,5) . Both sections contain fatigue design curves.

The fatigue design curves were developed by applying factors of 2 on the
median strain range and 20 on the median life (¢).

The median curve is the Langer model (7), having the form
s=an/Zys (4.12)

where S is defined as

w
n

1/2(4e)E (4.13)

E being the elastic modulus. K and Se are the parameters to be determined
from the data. Se can be interpreted as the endurance limit. The design
curve is actually 3 lower bound envelope. See Figure 4.6. Past experience
indicates that these factors satisfactorily account for possible size effects,
data scatter, surface-finish influences, moderate environmental effects and
time history effects on fatigue resistance™

The factor of 20 on 1ife dominates the design curve for cycle lives
typically less than 20,000 (6) as suggested by Figure 4.6. It is of interest
to examine the actual risk implied by such a criterion,

Figure 4.7 illustrates how the design curve, ND and risk level o are
related. Note that a depends on the amount of scatter in N, but ND does nct.
For a narrow distribution of N[Ae, o is small and vice versa.

The reiationship between o and the coefficient of variation of N,

denoted as CN’ can be derived as follows

*
For an interestiqg commentary on the ASME fatigue curves, see the article
"Safety Fac;ors'1n Fatigue Design; Arbitrary or Rational", by J.T. Fong
ZESEJ.?éB?m1th in Critical Issues in Materials and Mechanical Engineering,

4-13
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Figure 4.7

Risk Level as Defirad by the N/20 Curve for Two Different Distributions of N
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w = PLN . N ]
[ D (4.13)

PIN = N/20]

il

Assuming that N has a lognormal distribution (see Appendix 1), it follows

that

X o= \I*(»log(ZO)/g]o ) (4.15)

N

where -

/
Tlog N = 70434 log(1 + cNZ) (4.16)

and where $(+) is the standard normal distribution function.

In Figure 4.8 the risk level o is plotted as a function of CN for values
of CN commonly observed in fatigue test data. Smooth specimen low cycle data
typically have CN from 0.30 to 0.70, but welded joint data for example can
have values of CN as high as 1.5,

In summary, the plot of Figure 4.8 clearly shows that application of the
"factor of 20 on 1ife" curve leads to inconsistent levels of risk.,

4.7 The Tolerance Interval Used to Establish
a Design S-N Curve

Examples above illustrated how certain rules for drawing design curves
can lead to inconsistent levels of risk between data sets. Two methods are
presented herein for constructing. design curves which are statistically
consistent. They are a) the tolerance interval method described in this
section, and b) the equivalent prediction interval (EPI) described in
Section 4.8, The EPI method can also provide appropriate statistics for

reliability analysis,
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The tolerance limit is established for a single variable as described
in Chapter 2. However, it may be possible to use the tolerance 1imit to
define a design curve from SN data. It is necessary, however, to assume
the existence of failure trajectories, Yines paraliel to
the least squares line are illustrated in Figure 4.9. Thus SN data can be
translated into an "equivalent" random sample of N for any S. The standard
deviation of Y = log N is constant, with the mean of Y defined by the least
squares line,

The tolerance limit at any stress level will lie to the left of the

least squares line Y, a distance of Ka Ys. Thus the design curve is

Na = Y -K s (4.17)

An illustration of the design curve based on a tolerance interval is shown in
Figure 4.10.

The PP cdata of Reference 2 1is used to provide ar example of a design
curve based on the tolerance interval. The data is shown in Figure 4.11.
Assume that the decision has been made to define the design curve as the line
below which no more than a=1% of the population is expected to fall with

confidence y=95%; n=7. From Table

~N

.10 Ku Y=4'64 The design curve is

Y-k, s= I - 4.64(0.1427)
= Y - 0.662 (4.18)

The scatter factor is
C = ]OKQ,YS o ]00.662
=4 50 (4.19)

In summary, the concept of the tolerance interval can be used to establish
rational and consistent design SN curves. It is required to assume that faiiure
trajectories define material behavior. Moreover, the tolerance interval does

4-18
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not directly provide the information for a probabilistic design approach.

These restrictions do not apply to the use of the equivalent prediction in-

terval described in the next section.

4.8 A Consistent Method for Characterizing Linear Fatigue
Data - The Equivalent Prediction Interval (EPI)

The goal of the analysis described in this section is to develop a procedure
of fatigue data analysis having the following properties: (a) scatter in data is
represented, (b) consideration given to the statistical distributions of the
estimators, (c) probability estimates from the model are consistent and accurate.
(d) appropriate statistics for a probabilistic design analysis are provided and

(e) the model is easy to use. The equivalent prediction interval proposed herein
satisfies these requirements.

Assume that the strain-life relationship is of the form
m
N = K(Ae) (4.20)

For a given e, K and m (and therefore N) are random variables by virtue of the

scatter in the data. The value of K in Equation 4.20 is now equivalent to KOK

in Equation 4.5.

In a design procedure, two strategies exist.

1. A deterministic approach in which a "design curve" is established on the

safe side of the data. Assume that Y|X is normal with standard
deviation of s. For example, to establish a line below which only 1% of
the points would be expected to fall, let a=.01 and za=2.33 from normal

tables. The "design curve" is given as

Tog Ny = Y - z,_s (4.21)




ND is shown in Figure 4.2 (see also Figure 4. ). Use of this as a
design curve is subject to the pitfalls as described in Section 4.5

and Section 4.6.
But this approach insures a lower 1% bound only in the limit as

n-, For small n, typical of fatigue tests, this method is uncon-

servative as described below.

2. A probabilistic approach in whicii a and b (and therefore m and K) are

treated as random variables. Stand..d probabilistic design methods are
employed to insure structural integrity. But a and b are bivariate
normal (3), and therefore m and K appear in the failure function as
correlated random variables. The problem becomes complicated.

The distribution of a future observation, defined by the prediction
interval is described in Section 4.5. The lower 1% prediction interval is
also shown in Figure 4.12. Again, we see that use of the ND curve is mis-
leading in terms of the implied risk.

It would be difficult to incorporate the notion of a curved prediction
interval into a design algorithm. However, it is observed that the equal
p-obability Na curve is relatively flat. This suggests that prediction
~“tervals can be approximated as straight lines, called herein, equivalent

prediction intervals, and abbreviated EPI.

Development of the EPI concept is described by Wirsching and Hseih
(8) and summarized in following discussions.

Define an equivalent constant standard deviation of Y as

Ty = S g(n,a) (4.22)
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where

e <A RSk b 1

a(na) = explA(@){in n 1730 (4.23)
A() = 1.55[y In éléﬁq‘-‘z (4.24) |
B{a) = 3.32 - 1.7a

6 <n <505 001 <afg 0.15

Basically the idea is to use the model of Equation 4.2 , but with an expanded
value of s (the value of o defined below) so that the Ny curve is shifted to

the left to match the Na curve.
g(n,a) > 1 is in essence, an adjustment factor to s to account for the fact that

there is uncertainty in the estimates of a and b and s. For convenience, a %
chart of g(n,a) is given in Figure 4.13. é
The model, suggested by the above discussion, is as follows:

1. Let m = b be a constant. i

2. Assume that all of the uncertainty due to scatter in the data is accounted
for in ; (and therefore K) by considering the y intercept as a random
variable.

3. Therefore, let the empirical relationship be

Y = a, + Gx (4.25)
where 3, has a normal distribution with mean a and standard deviation o,.

The consequences of such a model are

1. Y|X has a normal distribution. (Thus N given Ac has a lognormal distri-
bution)

2. The mean value of Y|X is ; + Bx. (Thus the estimate of the median of N is

ﬁ = E(Ae)m

3. The standard deviation of YIX is % (and is not a function of X).

4, ;o = log K is normal and K is lognormal, The median K and coefficient of

variation CK af K can be obtained from the lognormal (base 10) forms

P 4-25
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/
/ 2
¢ = M0l /438 (4.27)
EXAMPLE Given the fatigue data (n = 7) as illustrated in Figure 4.12
define a design S-N Tine which is estimated tc be on the safe side
of 99% of the data. This line is to be the » = 0.01 EPI. The basic data
is summarized in Table 3.1, The estimators are presented in Figure 4,12,

Using Equation 4.23 with n = 7, o = 0,01

Alaz) = 4.64 B(a) = 3.30 g(n,a) = 1.67 (4.28)

Thus, the equivalent standard deviation is,

9y =9 - S (4,29)
(1.67)(0.143) = 0.239

Design Curve The 1% EPI is given as N*, where

~

*
TogN =Y - 2.0, (4.30)

This EPI could be used as the design curve in the conventional approach.
The EPI is shown in Figure 4.14 along with the prediction interval Na which the
EPI approximates.

Figure 4.14 suggests that the EPI is a reasonable approximation to N“ the
prediction interval. As the sample size becomes larger, Na becomes flatter and
the EPI becomes an even better approximation (7].

Probabilistic Format The data will be analyzed in a format which is convenient

for probabilistic design procedures.

The fatigue equation will contain m and K. Using the method described

above, m is a constant and equal to

m=b=-1.7 (4.31)
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X will be lognormal with a median value of (Equation 4.Z26)
k=10"-8930 = 22 (4.32)

Kwill have a coefficient of variation of (Equation 4.33) based on o = 0.01

_
I 2
¢, - 100-239)77.83% 1 < 0595 (4.33)

where 7, Was obtained from Equation 4.27.

Ir summary, Chapter 4 discussed the problem of establishing a design
curve and/or appropriate statistics for the case where strain-life data has
a linear trend (on a log-log basis) and uniform scatter. Analysis associated

with more complicated strain life models are treated in Chapter 5.
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Chapter 5 STRAIN-LIFE DATA ANALYSIS; SOME ADVANCED TOPICS

5.1 Preliminary Remarks

Chapter 4 discussed how to establishe a design curve, and provide
parameters for a probabilistic design format for strain-1ife data which
a linear trend throughout the range of ‘nterest, and has a constant standard
deviation of log N given log S (0109 w).  This chapter will describe analysis
procedures for other types of SN data.
1. The SN data has a linear trend, but scatter increases with decreasing
stress (or strain)
2. The general strain life relationship which is now commonly used in design
(1), i.e., for the local strain approach
3. A distribution of stress given 1ife N, in the high cycle range where a

stress endurance limit is assumed

5.2 Linear SN Curve With Variable Scatter

Consider the fatigue data of Figure 5.1. Visual examination leads one to
the conclusion that while there is a linear trend to the data, it does appear
that the scatter in cycles to failure N increases with decreasing strain e
(or stress). Data having this characteristic is said to be "heteroscedastic”.
This behavior is fairly common in fatigue data.

The following analysis procedure is proposed to characterize the data for
design purposes. The data of Figure 5.1 is used as an example.

1. It is assumed that (a) the data follows a iinear relationship, (b) the
distributisn of Y = log N given X = log Ac is normal. The least squares
Tine Y=a-+ Ex, is obtained from the data (Xi’Yi)’ i=1,n. It isan
estimate of the mean of Y for a given X and therefore the median of N

for a given Ac, The least squares line is shown in Figure 5.2,

5-1




N Jun1IYd 01 $310190

S|3A37 UJRAIS JIMOT 3P U493VOS Paseaudu] Buijedjpuj ereq 3jLi-uleads
1°G auanbiy

0l K] 01 01 _.EI
TIPS TP R VTP E SN HTYSR e TR
zopmo_ = A I\
R |
+ +
+ -
+ T )
< I
+ ] H
s e w
t S B4
m ob%
N
+ |
» ' =
&
- ™M
+ o+
-
+ N
é]l
q,

5-2



v

99°1-

(3v)¢(82" = N &
A ‘BuL7] saaenbg 3sed +

JHNIed 01 €31010
)i 0l 0t

r—

)

b
I

JONHENI

auLy ,0f, Yyl pue aur] saaenbg 3sea] ayy

2°G 3unbiy

0T

5-3

At e . 7

R ——



define the deviations as di = (Y - Yi)' Compute,

—

2
d; (5.1)

[ ]

r"’l

/

s 3 VvV 3
n-2;21

as an estimate of gavg, the average standard deviation of Y given X. For

the data of Figure 5.1, s = 0.194.

Assume that 'd{, the absolute value of the deviation, has a linear rela-

c + eX.

tionship with X. Determine the least squares line !a(x)i
This is shown on Figure 5.3.

Assume that the standard deviation of Y given X has a linear relationship
to X. It is denoted as o(x). The estimate of o(x) is denoted as s(x).
Assume that s(x) is proportional to !a(x)l. The scale of s(x) is esta-
blished by defining s (the estimate of cavg) as the value of s(x) corres-
ponding to the mean value of X, denoted as X. In the example X = -2.05.
Both X and s are shown in Figure 5.3. The scale of s(x) is estab]ishéd

by noting that |d(x)] and s(x) are zero at the same point.

To use this information for design, several of the techniques described

previously can be used. As examples,

1.

A design curve defined as the mean minus M standard deviations can be
easily constructed from Figure 5.3. The M = 3 curve shown in Figure 5.2
illustrates the heteroscedastic nature of the data

Assume that fatigue behavior can be described by failure trajectories
which are flared from the least squares line in proportion to ia(x)l. An
example is shown in Figure 5.4. Then, for example, a lower tolerance
1imit can be used as a design curve as shown. The values of P = 0.01 and

v = 0.95 are those of the "A - values" in MIL-HDBK-5.
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3. For a reliability format, it is necessary to have the least squares

Tine, and the standard deviation. The standard deviation has the

functional form,

a(x) = A + BX (5.2)

IR P

For example, the estimate of o(x) is, from Figure 5.3,
s(x) = -0.0834 - 0.1377x (5.3)

This representation of o(x) significantly complicates reliability analysis.
However, a simplification using an equivalent standard deviation G, can be made.

Assume that a variable amplitude loading, consisting of k discrete strain ampli-

tude levels, €55 i = 1,k are applied. The fraction of time that €5 is applied
is known to be fi‘ An average, or equivalent standard deviation can be defined

as a weighted average, K

% =-ZT10(X1) (5.4)
1:

where Xi = Tog € But the right hand side is, by definition, the expected value

of o(x), denoted as E[o(x)]. Substituting Equation 5.2,

Q
[}

E{a(x)] = E[A + BX]

Q
"

o = A+ B-E[iog €] ' (5.5)

To find E{1og €] it is necessary to evaluate

-

Eflog €] =
;

H [~

]filog €5 (5.6)
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and if the strain amplitude levels are continuous with probability density

function f(z), then

Eflog =1 = (log =)f(c)de (5.7)

\/

In summary, the value of % as computed by Equation 5.5 can be used in a
reliability analysis. The least squares, Ns™ = K defines the median value of

K, and the coefficient of variation of K is, (using lognormal relationships)

—
‘, ,\/(0(00/0.434) 1 (5.8)

5.3 Statistical Analysis of the General Strain-Life Relationships

Fatigue tests can include cyclic plasticity and accompanying low cycle
fatigue. A stable hysteresis loop is recorded for each specimen as shown in
Figure 5.5. The figure also defines strain types. Strain reversals to failure,
2N, is recorded for each specimen. The general strain life relationship is
commonly used to describe fatigue strength for the modern local strain approach
to fatigue. General references include References 2 and 3.

An example is presented in this discussion. The data as well as the
analyses are given in Table 5.1.

The Coffin-Manson rule for the plastic strain-life relationship is
e . = 2p = ci(aN)© (5.9)
S '

The empirical constants e% (fatigue ductility coefficient) and ¢ (fatigue
ductility exponent) are established by a least squares line through the data

as illustrated in Figure 5.6.
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Figure 5.5
Stable Hysteresis Loop

‘ Ja¥as
t:::li!&) -'4:;;:--[&01E: <-—-j:

Ae = total strain range

Ae_ = plastic strain range

p

e _ = Ae_/2 = plastic strain amplitude
pa p/ P P

Bey = elastic strain range

e = Ae_ = elastic strain amplitude
@
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Plastic Strain-Life Curve for Example Problem
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The Basquin equation for the elastic strain-1ife relationship is,(4)

Aee S|f b
fea = 7 E (W) (5.10)

Again, the empirical constants S'f and b are astablished by a least squares

method. See Figure 5.7.

The total strain life curve is obtained by adding the elastic and plastic

strains.
a7 " %ea t %pa
= O% b ' c
= (207 + eg (2N) (5.11)

In this example, the total strain-life curve is shown on Figure 5.8.
The "standard deviations" in Table 5.1 were computed as follows. Consider
a failure point (Ei’ Ni)‘ Let Xi = 1091051 and X; = 109105i where €. is the

value strain from the least squares line at Ni' Let
d. = x, - X. (6.12)

The sample standard deviation, an estimate of Ulog e is given as

1/2
- 1] 2

Values of s, so computed, are given in Table 5.1, not only for the plastic and

Hor13

elastic strain curves, but also for the total strain curve.

For design purposes, it may be required to define a design curve on the
safe (lower) side of the data and/or specify statistics of the parameters. The
Tatter would be necessary if a complete fatigue reliability analysis is to be

performed.

At this time only preliminary studies of the statistical character of
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Figure 5.7

Elastic Strain-Life Curve for Example Problem
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strain-life data have been completed. Analyses of 14 sets of fatigue data

of steels and nickel base superalloys of various types have suggested the

following conclusions.

1.

There is no statistical relationship between the plastic and elastic
strain amplitude for a failed specimen. One might suspect one of
two possibilities (a) a specimen having high ductility would have
low strength,... good piastic strength, poor elastic strength, or
(b) a defect causes poor strength in both plastic and elastic strain.

No evidence in these preliminary studies suggests either phenomena

is dominant.

2. Scatter in cycle life (N) increases with decreasing strain level (ea).
This behavior is typical of fatigue data.

3. Scatter in fatigue strzngth (sa) decreases with increasing 1ife (N).
Experimentalists have suggested to the author tha! the standard devia-
tion of log €, is constant (not a function of N). No evidence that
this is fact is found in the present study.

The above conclusions are preliminary, and work on this problem is
continuing.

Based on the observations as described above, the following procedures

characterizing the data are presented as being reasonable.

1.

2.

The lower a% EPI curves associated with the plastic and elastic strain
life data can be established as described in Chapter 4. The 1% EPI
curves are shown in Fiaures 5.6 and 5.7. Then the total 1% EPI curve
of Figure 5,2 is obtained by adding (vertically) the two.

A lower tolerance 1imit can be established in the same way, i.e. by

a
curves and then adding the twu. The result is shown in Figure 5.9.

first using conventional methods {see Chapter 4) for Epa'N and €o -N
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Strain-Life Curve for Example Problem

Figure 5.8
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Figure 5.9

Strain-Life Curve and Tolerance Limit for Example Problem
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3. For a reliability analysis, statistics of s%, 5%, b and ¢ are required.
Assume b and c are constants and equal to the least squares estimators.
Assume that s% and s% are independent random variables having lognormal
distributions. In the example of Table 5.1, the statistics required

for a reliability analysis are as follows. i

Table 5.2
Statistics for Reliability Analyses for Example Problem

Median Coefficient of Variation
»
s% 148.8 kst 0.042
*
e% .491 0.263
L 2 4
b -.108 0
L 3 ]
c -.540 0

Ak

based on a 5% EPI, these values would be only slightly different
from the 1% EPI values given in Fiqures 5.6, 5.7 and 5.8

*
variable not random



5.4 A Model for the Distributign of Fatique
Strengths at High Cycle Lives

5.4.1 Preliminary Remarks
The number of lcad cycles experienced during the lifetime of a wide

variety of structural and mechanical components is in the range from 107
to 1010 cycles. 4hen metal fatique is considered to be the mode of failure,
it is necessary for the designer to know the fatigue strength (the maximum |
amplitude of the oscillatory stress) for a given cycle life N. |

Fatigue testing is however expensive, partly because of the length |
of time that it takes to apply these long cycle lives. An accelerated test ii §
method which has been used successfully involves loading of a specimen at - !7;
a relatively high stress level, with relatively short cycle lives, and
then extrapolating the data to the higher cycle lives.

Dascribed as follows is a study of an analytical method for the
statistical distribution of fatigue strengths at high cycle lives based on

data at relatively low cycle lives.

5.4.2 Basic Assumptions and Description of the Problem

Consider a constant amplitude high cycle fatigue test in which pairs
of data (S;,Ni), i =1, n are collected. Ni (the dependent variable) is
the cycles to failure associated with stress amplitude S; (the independent
variable) and n is the sample size. Data from a hypothetical test are shown
in Figure 5.1N. An endurance limit is assumed as illustrated by the horizontal
segment of this S-N curve. It is assumed that the endurance limit occurs at
107 cycles. Furthermore, it is assumed that the distribution of S at a given N

7

at 10’ cycles will be the same for any higher life cycle as shown in Ficure 5.10.
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. i

In general, a fatigue test plan specifies a tarmination of the

loading on a component which does not fail before a given life, This spec-

imen is called a "runner" and the data points are shown by the triangles
of Figure 5.1Q in which the test was suspended at 107 cycles. This data

must be included in the analysis.

To obtain a random sample of S, now defined as a random variable
denoting the fatigue strength at 107 cycles, the following procedure is

used. It is assumed that the fatigue strength for a given specimen is

defined by a straight line (failure trajectory) connecting the fatigue ﬁ

strength coefficient at s¢ 1/2 cycle and (Ni,si) as shown in Figure 5.10.

The data point (solid point in Figure 5.17) is projected to the 1ife cycle

7 cycles.

where the endurance limit occurs, which is assumed here to be 10
The sample point (circle in Figure 5.10) is denoted as S,. By such a

scheme one can obtain a random sample of s.

5.4.3 Analysis of Suspended Fatigue Test Data

Incomplete failure data consisting of levels on failed components
and unfailed components are called "multiply censored." This suspended
data can be analyzed utilizing the "median rank concept" and suspended
items approach [5]. The median ranks extracted from this approach will
be used to establish the empirical distribution function of fatigue

strengths.

Lipson and Sheth have described a method for obtaining the empirical
distribution function from a random sample which includes suspended items [5].
This method is a combination of a modified sudden death approach and Johnson's

concept of median ranking [6]. The method involves an adjustment of the order
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number based upon the position of the suspended items. Step-by-step instruc-
are illustrated by the following:

1. Suppose that the failure data on n specimens consist of the failure
stresses (at 107 cycles for the failed units and the stress levels for the un-
failed units (see Table 5.3 and Figure 5.11). Ordrr the failed units in the
sample from the smallest to largest failure stresses as shown in Column 3.

2. Obtain the number of suspended items which precede each failed
unit (Column 2).

3. Determining the "new increment" of each failed unit by using the

formula

(n + 1) - previous failure order number

New Increment = 1 + numper of 1tems following present suspended set

The new increment is recalculated each time a suspension is encountered in the
ordered stress table (see Column 4).

4. Calculate the order number for each failed unit. This calculation
is done by simple addition of the last order number and the new increment
(Column 5).

5. Obtain the median rank (empirical distribution function) of the
order number for each failed unit by the formula (Column 6).

The empirical distribution function F(S(j)) of Column 6 is used as
a basis for selecting a suitable statistical model. The method of least
squares, as described in Sections 2.5, 2.6, and 2.7, can be used. The cor-

relation parameter for the three distributions considered are

5-21
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Table 5.3
Analysis of Suspended Fatigue Data

EXAMPLE: Given a sample of fatigue failure stress at 107 cycles (in ksi);
n = 13; the data are ordered.

1.7 i 12,2 12.5] 12.7, 12.8‘l 13.3L13.8;14.0*5.14.0*i14.0*i14.4 : 14.7115.0*
- e i . - L : -

*Specimen did not fail at 107 cycles,

Organize data as shown below:

(1) (2) () (4) (5) (6)
Fail;:re Suspended Stress New Order Median Rank
Number [tems S/, Increment** Number** . j-0.3

Preceeding Failure ~(J) u () F(S(j)) = %f;—ajz

1 0 11.7 1.00 1.00 0.052

2 0 12.2 1.00 2.00 0.127

3 0 12.5 1.00 3.00 0.201

4 0 12.7 1.00 4.00 0.276

5 0 12.8 1.00 5.00 0.351

6 0 13.3 1.00 6.00 0.425

7 ] 13.8 1.00 7.00 0.500

8 3 14.4 1.75 8.75 0.631

9 0 14.7 1.75 10.50 0.761

**An example of how the new increment and order number are calculated:

The eight failure is preceded by three suspended items. Therefore, to

find the increment, as shown in Step 3 above,

. Q3+ -7
l‘ 1+3 -1.75

Thus, the new order number is j = 7.00 + 1.75 = 8.75

The remaining order numbers are determined by using the same procedure and

_8.75 - 0.3

P33+

= 0.631
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Distribution Family Correlation Parameter, c*

ilormal 0.2010
Lognormal 0.1809
Weibull 0.2738

The lognormal is considered to have the best fit because it has the smallest =.
The probability plot is given in Figure 5.12. The line is fit by the least
squares method and the distribution parameters on the figure are computed from
the least squares line (using Equation 2.15 and 2.16).

In summary, for example, the distribution of fatigue strength S given

cycle 1ife N in the high cycle region (beyond 107 cycles) can be modelled as a

Tognormal distribution. The parameters are My = 2.67 and ay = 0.107, where
X =1nS. Using the relationships of Appendix 1, the sample mean and stan- g
dard deviation of S is S = 13.8 ksi and Sg = 1.48, respectively. Full con-
sideration was given to "runners" in the data analysis.
Statistical methods of estimating the fatigue strength at a given cycle

life are available. Such methods, summarized by Reemsnyder (7), Lipson and

Sheth (5), and by Collins (8) include the survival method, the staircase method,
and the Prot method. Because these methods typically require long cycle lives

and relatively large sample sizes, testing tends to become expensive.

*See Equation 2.29
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Figure 5.12
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Lognormal Probability Plot for Fatigue Strength S
beyond 107 Cycles from the Data of Table 5.3
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Estimated Parameters:
Mean of S = 13.15
Standard Deviation of S = 1.01
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CHAPTER 6 LIFE PREDICTION EQUATIONS USED FOR FATIGUE DESIGN

6.1 Preliminary Remarks

Engineering models used by designers for fatigue failure avoidance usually
employ the concept of "damage". Symmarized in this chapter are some of the var-
ious forms of damage in current use. It is shown that the concept of damage can
be employed for variable amplitude loading using both a characteristic S-N curve
approach and under certain assumptions the fracture mechanics approach. More-
over the concept is used also for strainrange partitioning in which damage is
jdentified not according to stress level but with each of four different types
of inelastic strains.

The limit state is achieved when damage D attains a critical level A.
Experimental results in which damage at failure 4 is measured are summarized
herein. Both variable amplitude loading and strainrange partitioning results

are presented as statistical distributions of A.

6.2 The Concept cf Damage

Assume that the SN curve for a component subjected to constant amplitude
loading is as shown in Figure 6.1 and that no statistical scatter exists. Blocks
of constant amplitude loads are now applied as shown. Fatigue damage D associated
with this variable amplitude process is defined as

k n,
D =,~Z1ﬁé}—) (6.1)
where n., and N(Si) and k are defined on Figure 6.1.
More generally as a component accumulates a load history in service, damage
can be expressed as a function of time t and several other design factors denoted

by the vector U, which relate to the loads as well as to the SN curve. Thus

DAMAGE = D(n, g) or D(T, g) (6.2)

6-1



Figure 5.1

Basic Terms Used to Define Damage Under Variable Amolitude Stresses

STRESS S

(amplitude or range

-

Characteristic SN Curve Based on
Constant Amplitude Tests

CYCLES TO FAILURE, N

@\Uf j[{/ AU/] HMU nuﬂ . -%L%——IE

k = number of blocks of loading

Si = stress level (amplitude or range)

n, T number of cycles applied at stress level Si

N(S,) = number of cycles to failure at stress level Si
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Miner's rule states that failure occurs when D, a monotonically increasing
function of time, equals unity. A more general definition is provided in Section

6.5. The fallowing two sections summarize some damage models in current use.

~

6.3 Some Expressions for Damage Used by Designers for Variable 4mplitude Loading

Following are examples of expressions for fatigue damace under variable am-
plitude (random) loading. The model to be used depends upon how the load history
and the SN relationship are specified.

CASE 7 Often field measurements result in a variable amplitude stress range his-
togram as shown in Figure 6.2. The fraction of time that the stress range is at
Tevel Si is fi' Thus n; can be written as a fraction of the total number of

applied cycles, n

n, = fin (6.3)

and the damage at cycle life n is,

o f,
,
D=n§ (6.4)
§2NGS)

CAcT 2 Assume a linear S-N curve, N = ks, MNote that the value of K depends

upon whether stress amplitude or range is considered. Equation 6.4 becomes

n = m
D=y 1.Z]f.si (6.5)

But the summation is recognized as the expected value of Sm for a discrete random

variable (1).

E(s") = J £.5." (6.6)
j=1 1

Thus D = g E(ST) (6.7)

PPy



Figure 6.2

Prcbability Density Function for Fatigue Strass Amplitudes (or Ranges);

Discrete Model
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Figure 6.3

Probability Density Function for Fatigue Stress Amplitudes (or Ranges);

Continuous Model
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m
Note that in the special case of constant amplitude loading E(Sm) = S, and

Equation 6.7 becomes
D - : sm (6.8)

An equivalent constant ampiitude stress can be derived by comparing Equation 6.7

and Equation 6.8
s, = [e(sM1'/" (6.9)

This stress is sometimes called "Miner's stress". Assuming Miner's rule works,
the value of Se can be entered into a constant amplitude S-N curve to predict
life N under variable amplitude loading.

CASE 3 Assume that the distribution of stress ranges S can be treated as a con-
tinuous random variable, the pdf of which is shown in Figure 6.3. The fraction
of cycles at stress level s in the interval (s, s + As) is

fi T fo(s)as (6.10)

Combining Equation 6.1 and 6.3 with Equation 6.10 to obtain the continuous

equivalent of Equation 6.4,

K
D = nz fS(S)AS

6.11
i=1"N(s) ( )
In the limit as As -~ 0, P>
_ i§(s)ds
0

CASE 4 When S is continuous and it can be assumed that the S-N curve is linear

m
of the form NS = K, the expression for damage becomes



~

D = %jsmfs(s)ds (6.13)
0

Note that the integral is by definition the expected value of Sm, denoted as E(Sm).

Thus, as in the discrete case,

£(s™ (%.14)

Any statistical m8del for S can be used, but it is common to use the Weibull,

having a distribution function of the form

Fo(s) = 1 - exp[-(s/8)"] (6.15)

where the parameters £ and § must be determined from an analysis of the stress

data. For the Weibull
E(s™) = (T + 1) (6.16)

In the special case where I = 2, the Weibull reduces to the Rayleigh dis-
tribution. This is an important case because the Rayleigh is the distribution

of peaks or ranges in a stationary narrow band gaussian process having RMS value

of o.

8§ =((/20) if stress amplitudes are considered
(2/20) if stress ranges are considered

Thus we get the familiar form of Miles' equation for damage under n cycles

of stress of a narrow band process in the case where K is based on amplitude (2).
D = (n/K){(vVZo)™r(m/2 + 1) (6.17)
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6.4 Damage Using a Fracture Mechanics Approach tc Fatigue

Consider the Paris equation for fatigue crack propagation under a sequence
of constant amplitude stress ranges, S
)m

da/dn = C(Ax (6.18)

where C and m are empirical constants, a is the crack length and n is cycles.

4w is the range of stress intensity factor
Ak = YS/A (6.19)

where Y is the geometry factor.

An expression for cycles to failure can be derived by integrating Equation
.18, a from 3, (the initial crack size) to a, (the critical crack length), and n
from 0 to N (the cycles to failure). Assuming that Y is constant (not a function

of a) and a_ > > a,s it follows that

1

Ns™ = e ¢ (6.20)
a';‘/? - Tms2 - 1)eY™

But this form is identical to the form of the SN curve used in the previous section.

The right hand side is identified with K, an empirical constant.

Consider a random load sequence of Si' i = 1,n. If sequence effects were not

important, it may be reasonable to use !iner's rule as above, and express damage as
D=F E(s™) (6.21)

For this to oe a useful model, there should be a reasonable distribution of Si‘s,

e.g. no grouping of the large and small amplitudes. There should be no large
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ceerl2ads to Cause significant crack retardation.  Morkover, & wust be assumid
that the mean stress associated with each cycle does not influence the constants,
C and m.

As described in Section 6.3, a Miner's stress Se can be defined by Eauation

6.9. Then an equivalent stress intensity factor can be defined as

.'llce = YSév’a- (6.22)

where Se = [E(Sm)]]/m. -

If the model is valid, a da/dn - Ac curve observed from random loading
using Equation 6.22 should produce the same results as the constant amplitude

curve.

6.5 Damage Expressions for High Temperature Low Cycle Fatigue

The Taira Law: A damage expression which includes the effects of fatigue

KM Y
D = 1'51[‘;‘_17 b (6.23)

where definitions of n, and N, are given in Section 6.2 (see Figure 6.1); ti is

*
and creep is
q

1

the time duration of the load condition, i and T; is the time to rupture at lcad
condition i. There are q discrete conditions of creep.

This model is easy for designers to use, but it does not account for syner-
gistic effects of fatigue and creep.
Straintange Partitioning (SRP): The method of strainrange partitioning (SRP)
developed by Manson, Halford, and Hirschberg [3]is well documented in their

report as well as the later reports of Hirschberg and Halford [4) and Bernstein

51
* 3
A combination of Miner's rule an? Robinson's law.

6-8
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Four different types of strainranges can be defined as the basic building

blocks for any conceivable hysteresis loop:

1. PP -- tensile plasticity reversed by compressive plasticity
2. CP -- tensile creep reversed by compressive plasticity

3. PC -- tensile plasticity reversed by compressive creep

4. CC -- tensile creep reversed by compressive creep.

First strain-life relationships for each of the strainrange types are

established by experiment

as
N, = Aj(ae);t i = PP, CP, PC, CC (6.24)

s sk .

Given a hysteresis loop for fatigue stress at a point (obtained from stress g
analysis), the fraction of each strainrange type fi’ a component of the total
inelastic strainrange is identified using an algorithm as described in References

3 and 4. For example, fpp = Aepp/AEin where be g, is PP strainringe and Ae;

is the total inelastic strainrange.

fo=1 i= PP, CP, PC, CC (6.25)

1

i
™
"
W14
o
[
e~

1 i

Damage after application of n cycles of the constant amplitude strain cycle,

is defined as

4
n X(fi/Ni) i = PP, CP, PC, CC (6.26)
i=1 ’

b=

6.6 Damage at Failure--Some General Remarks

Assuming that no healing occurs in the component, fatigue damage will be
a monotonically increasing function of n {(or 1) as shown in Figure 6.4. Dam-

age D will increase until it reaches a failure level A,
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Figure 6.4

*
Damage as a Function of Time

Fatigue Damage
0(n,y) .

--7f_:_-f__. i A

Median AN y
\>>( . N— Fatique Damage, D

Sample paths .:;,——"'—' Shown as monotonicall: °
~\\\.~' 7. increasing, assuming
il that no healing occurs
- < e
-~

pdf of D

;;:;___, Median

CYCLES OF STRESS, n (or TIME, <

*A more advanced model using fracture mechanics methods, considers
strenath as a process which monotonically decreases: See "Relia-
bility Analysis of Fatigue Sensitive Aircraft Structures Under
Random Loading and Periodic Inspection” by J.N. Yang and Y.J.
Trapp, AFML-TR-74-29, February 1974.
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Note that if only one stress level is applied, failure occurs when D = > =
Without any knowledge of the physical process of fatigue, the obvious assumption
to make is that in general failure occurs when D = A = 1 for any sequence of
stresses. Indeed this is the Palmgren-Miner hypothesis, or "Miner's Rule" as it
is often called [6,7]. But recent studies have suggested that for design pur-
poses it is useful to model > as a random variable [87.

Consider a hypothetical fatigue test in which the SN behavior is determin-
istic as shown in Figure 6.1. Damage at failure denoted as 4, is measured for
m specimens subjected to different load histories as shown in Figure 6.5. If
Miner's rule is exact, all Ai = 1. But Miner's rule is a simple model used to
describe a complicated phenomena. As 2 result, primarily of sequence effects,
one should expect statistical scatter in the sample Ai’ i = 1,m. Therefore
damage at failure A should in general be treated as a random variable.

In practice of course, observed values of a4 will also contain scatter by
virtue of basic variability in material behavior. To measure the statistics on

A, somehow material variability effects must be removed.

6.7 Fatigue Design Relationships

The design life No in cycles (or To in time) is specified. Three equivalent
formulations are commonly used for design purposes.

Foumulation 1; Damage at the design life No is denoted as D(No,g). For a
médel in wnich the designer assumes that A and g are constants, the condition

for a safe design at life N0 is

D(No,q) < A (6.27)

1.
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Figure 6.5

Fatijue Stress Seguences for Several Specimens in
a Hypothetical Fatigue Test

A

Specimen 1 ﬂwffﬂm‘?ﬁ R
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time
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N Failure

time
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To insure a safe design given statistical scatter and uncertainties, the
designer can use a) a design curve on the safe side of SN data, as well as
"safe-side" values for all Ui and/or b) a reduced value of 2, e.9., &4 = 0.30,
rather than the o = 1 of Miner's rule.

Assume that A and y are treated as random variables. The density func-
tion for each at a given life is shown in Figure 6.4. The probabiiity of

failure at life n can be written as,
pe = P[a < D(N,U)] (6.28)

Example: Consider the damage expression when stress is a stationary

narrow band process (Equation 6.17). The probability of failure is
pe = PLa < (N/K)(v20)"T(m/2 + 1)] 6.29

where in general A, K, o and m could be random variables. The problem of

evaluating Pe is described in Chapter 7.

Formulation 2: Let N be a random variable denoting cycles to failure. Thus

D(N,g) is damage at faiiure, A
A = D(N,U) (6.30)

Inverting the expression,

N(a,U) (6.31)

=
[{]

Assuming that A and U are constants, the condition for a safe design is

N <N forT_ <T) (6.32)

0 o)
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Given statistical scatter and uncertainty, a safe design can be insured by
using a) a design curve on che safe side of the SN data, and/or b) conserva-
tive (high) values of stresses, and/or c) a value of NO larger than the

*
expected service life N For example, No = 2N. has been used [9].

S’ S
In a reliability approach, the probability of failure can be written as,

PLN(a,U) < N.] >

in which A and U are treated as random variables. Figure 6.6 illustrates the
pdf of N, as well as Pf.
Example: Consider the damage expression of Equation 6.17 with n = N and

D = A. Solving for N and substituting into Equation 6.34,
P = PLAK/(VZo)"T(m/2 + 1) < N ] (6.35)

where in general A, K, ¢ and m would be considered as random variables.

Formulation 3. Another approach commonly used requires knowing the distribu-
tion of fatigue strength S at a given design life No' The pdf of SIN0 is
illustrated in Figure 6.7. HMiner's stress Se (Equation 6.9) can be compared
to strength. Miner's stress will be a function of random design factors g.
In the special case of constant amplitude stress at level So’ Se = So'
If the SN curve is given S = S(N), then the condition for a safe design
is

'
Se < S(Jo)

*
applied to an S-N curve already on the safe side of the data

6-14
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Figure 6.6

Statistical Distribution of Cycles to Failure N at Stress Level, Se
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Figure 6.7
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Distribution of Fatigue Strength and Stress at Design Life No
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For example, if the S-N curve is NS = K, then a safe design occurs when

) 1/m
S. < (K/No) .

o But, in general, Se will be a random variable as suggested

by the pdf of Figure 6.7. The probability of rariure is

(V)] (6.36)

Pe = P[S « Se ‘

Example: Miner's stress for the case of a stationary narrow band Gaussian

process is obtained by combining Equation 6.9 and 6.16

5, * /2r(m/2 + 1n7" o (6.37)
Assume that fatigue strength at No is given as NOSm = K. Thus the probability
of failure is

Pe = P[(K/No,”m < v2{r(n/2 + N}M o] (6.38)

In general, K, c and m will be random variables.

Note that this form is similar to the two above examples with the exception

that A is missing from this form. It's influence could be accounted for by a
variable which multiplies Se' Such a variable would describe the uncertainty
associated with using Miner's stress as a characteristic stress.

6.8 Statistical Considerations of the Palmgren-
Miner Fatique Index

The Palmgren-Miner linear damage accumulation rule (referred to herein 2s
"Miner's Rule") for estimating variable amplitude fatigue life is easy to use
and therefore widely employed in design procedures. But because fatigue is
a complicated process involving many factors, iner's rule, a simplified

description of fatigue, does not provide consistently accurate predictions.
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There is a need to quantify the performance of Miner's rule to provide guid-

ance to designers.

A statistical study of the results of fatigue experiments of several
investigators was performed by Wirsching, Yao, and Stahl, and summarized in
Reference 8. A sumnary of this study is presented here.

Composite statistical models of fatigue damage at failure (denoted
as &) were developed. The lognormal distribution was used in the statistical
analysis of 4. Such a study of the statistical variability of a relatively
simple theoretical model is necessary and desirable for the development of
probability-based fatigue design codes.

Define D as fatigue damage as computed by a linear damage rule, Consider
a fatigue test performed by an investigator. Let r be the number of specimens
in the test., Let Ap be the value of D at failure for the pth specimen. To

evaluate Ap,

A = Cycles to failure for the pth specimen

P Cycles to failure predicted by the PM rule (6.39)

A sample from an investigator would be Ap; p=1,r, with the tests in general
being performed at different stress levels.

Because of the scatter observed in the data, it is suggested that the
quantity A be represented as a random variable. In general, failure can be
defined as the event (D > A). This is a generalization of Miner's rule which

states that failure occurs when D = 1. The probability of failure is given by
Fe = P(D > 4) (6.40)

Assume that A has a lognormal distribution with mean L,» standard deviation Ty

and a coefficient of variation (C.0.V.) CA = UA/UA.

6-17
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Test data on damage at failure » obtained by several investigators is

sumrarized by the distribution functions of Figure 6.3 and in Table 6.1.
Following is commentary on this data summary and how it was developed.

The sample mean of ) obtained by the ith investigator is
V., = 1. \ (6.41)
.~ r - s L

and is an estimate of Ly The sample standard deviation is

1/2
“‘T z (a - Ai _1 (6.42)
p=1 J

and is an estimate of Tpe The estimate of the C.0.V. and median of the data

of the ith investigator are, respectively,

C, = $;/44 (6.43)

i

3, = 511 V1 o+ cl.2 (6.44)

The assumption that 2 is lognormal is based on observations of the empi-

rical distribution functions of Figure 6.8,

6.8.1 The SAE Fatigue Program

The SAE Cumulative Fatigue Damage Test Program was an effort to exchange
information between experts in universities and industry on methods of testing
and life estimation [18]. The load histories defined were considered to be
typical of those experienced by components of automotive vehicles. Test

specimens of RQC-100* and Man-Ten** steel were compact tension specimens with

*Bethlehem Steel; roller quenched and tempered to 100 ksi miniminum
yield strength.

»*) S, Steel; hot rolled to 50 ksi minimum yield strength,
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DISTRIBUTION FUNCTION

OF A,(%)

99

R

10

Figure 6.8

Empirical Distribution Functions of
Damage at Failure from Various
Investigators {Key to the numbered
curves is given in Table 6.1

DAMAGE AT FAILURE, &
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Table 6.1

Zstimatas of Statistics of Jamage at Failure, 3

Jased on a Loqnorma! Mode! for ).
{n = aymber of .pecimens)

R . Standard Coeffictent of
Mean of 4 Median of 3 Javiation of 3 variation of
4 3 Sy Ci

1. Crichlow et al.(1Z; an amalgamation
of test data of many confijurations
and materfals of flight vehicle *1.53 1.30 0.962 9.627
structures including fuil scale ?-51

and C-46 airplane wing tast (n=266)

2. Schijve (11); amalgamation of results
from 19 reports; all specimens 2024 1.72 1.23 1.68 0.980
and 7075 aluminum

3. Richart and Newmark (12); axially

loaded large (3 1/2 x 1/2 in) 1.27 1.23 3.381 0.269
specimens of ASTM-A7 (n=3)) (1.79)*

4. Richart and Newmark (12); rotating
beam small specimens (dia. = 1.37 i.39 0.519 9.353
0.160 in) of ASTM-A7 (n=29) (2.06)*

S. Topper. Sandor, and Morrow (13);
strain controlled tests on 2024-T3 1.15 1.14 0.186 0.161
aluminum (ne18)

6. Oowling (1L4); 2028-T4 spacimens;
mostly in the elastic range, bdut
some with large plastic strains; 0.363 0.323 3.27% 0.314
rainflow method used to count
cycles (n=83)

7. Topper and Sandor (13); strain
controlled tests on 2024-T3 -
aluminum with tensile and com- 0.336 0.309 0.213 0.262
pressive mean stresses (n=11)

3. Miner { 7): tests run at two oOr
more stress levels on 245-T 0.980 0.349 0.251 0.256
Alcad (n=il)

9. Schilling (16); welded cover plated
beam specimens of A36 and ASTM AS14
under simuiated random bridge 1.44 1.28 0.78 0.54
loading (n=36)

10. SAE Fatigue Design & Evaluation
Committee; tests on Man-Ten §
RQC-100; notch specimen with 1.46 1.09 1.30 7.389
cyclic plasticity at notch root:
See Tabie I[I; (n=S4)

Swanson (17): an amalgamation of rangom
fatigue test data (n=671): Values
based on an assumption that C, =+ 0.50, 1.3 1.34 J.726 J.

and F {1.3) = 9.47 -

U
<

*Cstimates of L, Jsing 3 ‘minimum SH curve’ 6-20
-




a keyhole notch. Failure was said to occur at crack initiation, which was
arbitrarily defined as a crack of 2.54 mm (J.10 inch) A total of 54
specimens were tested.

Results of several investigators in the SAE program, using various
analysis methods to predict cycles to failure, all using the PM rule, are
presented in Table 6.2. Data from both materials are assumed to be from
the same population. No attempt was made to judge the quality of the various
analysis methods in computing the average values at the bottom of Table 6.2.

These average values were used in Table 6.1.

6.8.2 A Statistical Composite of A
The goal of this study is to provide information to designers. To
synthesize, for design purposes, the data of Table 6.1, statistics of com-

posite data from two or more investigators, the following forms were used.

m
< n.a. (6.45)

g = 5% 0y - D7 (6.46)

where A is the sample izean of 4, Zi js the sample mean obtained by the ith

investigator (as given in Table 6.1), n; ic the sample size of the ith inves-
tigator, m is the number of investigators, SAZ
si2 is the sample variance obtained by the ith investigator using Si (this

is the sample variance of 4,

is what is given in Table 6.1), and n is the total number of observations by

all investigators. Table 6.3 and Figure 6.9 provide summaries (using Equa-

tions 6.45 and 6.46) of the analysis of the data listed in Table 6.1.

6-21



Table 6,2

Summary Statistics an L From
SAL Cumulative Fatizue

Test Program (18)

Socie and Mor=ow (319)

Nominal strain life analysis

Component calibration (incl
mean)

Nauber rotch analysis
Component calibration

Dowling, 8rase, Wilson (20)

Base line case
Base line case (Smith mean par.)

Load strain extrapolation of
elastic analysis

Load strain calibration from
Neuber's rule

Load. strain calibraiton from
finite element analysis

Constant ampiitude load life

Landgraf, Ricnards, La Pointe (21)

Neuber notch analysis
Load local strain analysis
Strain based analysis

Brase (22
Incl mean stress and overstrain

effects

AVERAGE VALUES

-—

—_— NN

—

.885
A7

.90

.20
.15
.587

.56

.877

.79
.69
.33

.43

.46
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Jal.b

[» 1

[£S]

age

. 363
.891

.693
.384

.97C

(]
‘0

4

{-

.06
.00

.745

- NN
. .

-
.

.14

.30

)

1.79
.855

.828
.939

.746
.739
.920

713

.889
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DISTRIBUTION FUNCTION

OF A, (%)

Figura 6.9
tmoirical Distribution Functions of Statistica)
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6.8 3 Analysis of the Variability in A

For design purposes, it would be desirable to quantify the contribu-
tions of various factors to the total variability in 4, However, much
of the detail regarding experimental procedure is lost in the data of
Figure 6.6 and Table 6.1. Nevertheless, this data as a whole can be
interpreted as an amalgamation of experiences and, as such, implicitly
includes effects of many of the relevant factors. Values of coefficients
of variation for material strength, e.g., yield strength of steel, ultimate
strength of composites, etc. are typically less than 0.15 and, therefore,
the values of Ci listed in Tables 6.1 and 6.2 suggest a relatively large
scatter in the data.

Assuming the A is the product of several random factors whose dis-

tributions are lognormal, it can be shown that

1+¢ 2

A T+ G

) (6.47)

"
[ RN

i=1
where j is the number of factors which influence A, and Ci is the coeffic-
ient of variation of the ith factor. It is assumed that all factors are
statistically independent,

Often available is statistical information on fatigue variability inher-
ent in the material, described by CN. Suppose that this is the only factor

for which statistical information is available. Then Equation 6.47 reduces

<0

1+¢%=(1+ ch) (1 + coz) (6.48)

where Co is the coefficient of variation of all of the other factors.

625




In general, it is difficult to separate the effect of material
variability from statistics on & using the method described above. In one
example, the writer is suggesting that reasonable statistics For 2 when
material variability is considered elsewhere is

Median, & = 1.00

Cov, C, 0.30

9

with » being lognormal [8].

6.9 Statistical Considerations of Damage at
Fajlure for Strainrange Partitioning

Statistical analysis of damage at failure A for some strainrange parti-
tioning (SRP) test data is presented in this section. This exercise was
intended to provide necessary information for a total reliability analysis.
Furthermore, statistics on A provide a quantitative measure of the perfor-
mance of SRP.

Fatigue damage after n cycles is (see Secti- 6.5 for definition of
terms)

D=n

[T o I =1

(fi/Ni) i = PP, CP, PC, CC (6.49)
i=]
Note that, in general, fi and Ni are random variables so that D also is a
random variabie.

The SRP model defines a "predicted life" (cycles to failure) Np. In

Equation 6.49 Tet D =1 and n = Np at failure; choose the

median, or best estimate, values fi and Ni' Then the predicted life is

T}' - Z(;./ﬁ.) i = PP, CP, PC, CC (6.50)
p i
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Consider a hypothetical experiment where several specimens are tested,
having the same Np but different proportions of strainrange types fi’ and
therefore different lives Ni‘ The cycles to failure Nf for each specimen
is recorded. The scatter in the results reflects the uncertainty in

a) the life relationship, N., i.e., scatter in Ae-N data, for each strain-

i
range type, b) the process of computing the partitioned strainranges, fi’
and c) in the performance of the linear damage model. Thus, Nf is a
random variable depending upon these three fundamental sources of uncer-
tainty.

Let damage at failure be a random variable denoted as Ao. This is
the random variable which describes the uncertainty in the performance of

the linear damage model. At failure D = Ao and n = Nf. An expression for

Nf can be written as (from Squation 6.49)

N.=AJ/C
f ) 1.(fi/N1.) (6.51)

bgs fy» and N (i = 1,4) are random variables representing the three sources

0’
of uncertainty mentioned above. The distribution of Ao reflects only the
inaccuracies of the SRP model. Unfortunately, there is no convenient way to
measure AO. However, it is possible from test data to obtain some informa-

tion on SRP performance.

Equation 6.51 can be reformulated using the median (and constant) values
fi and Ni' (
= P 6.52)
Nf = A/Z(fi/Ni)
Now A includes the variabiiity of fi and Ni’ as well as model uncertainty.
However, A can be measured directly from fatigue data. Substituting Equa-

tion 6.50, it follows that
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A= Nf/Np (6.53)
Given a single test specimen, the value of ii is
85 = Nogs(1)/Mpre( 1) (6.54)

where NOBS(i) = observed cycles to failure and NPRE(i) = predicted cycles to
failure. These values are available in the literature for SRP tests of various
types. Table 6.4 summarizes the results of statistical analyses of several
tests. For a given sample, Ai’ i =1,r, the statistics were obtained using
Equation 6.41 through 6.44,

Following is a brief description of the differences in baseline and verifi-
cation tests as noted in Table 6.4.

Baseline Tests - Refer to the high temperature low cycle tests used directly in

the establishment of the four SRP inelastic strainrange versus life (Aein - N)

relationships.

Verification Tests - Refers to the non-baseline high temperature low cycle fatigue

tests and results used to check how well the established SRP relationships can be

used to predict cyclic lives. A primary requisite of a verification test is that

it should contain some feature or complexity not present in the baseline test.
Finally it should be noted again that the scatter in A as reported by

Table 6.4 includes uncertainties due to fi and Ni as well as uncertainties in the

SRP model. It ic generally desirable to separate these uncertainties ( to obtain

the distribution of Ao) in order to perform a reliability analysis. No attempt

is made to do so in this study.
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Table 6.4

A Statistical Summary of SRP Data on Damage at Failure A

AISI 316; 705C (1300F)
Baseline tests
Ref: Saltsman and Halford (23)

AISI 316
Verification tests
Ref: Saltsman and Halford (23)

AIST 304
Verification tests
Ref: Saltsman and Halford (23)

AISI 304 and 316
A1l verification test points
Ref: Saltsman and Halford (23)

AISI 316
PP + PC + CC data only
Ref: Saltsman and Halford (23)

AISI 316
PP + CP + CC data only
Ref: Saltsman and Halford (23)

AISI 316
PP + CP data only
Ref: Sa’tsman and Halford (23)

AISI 316
PP + PC data only
Ref: Saltsman and Halford (23)

AISI 304
PP + CP data only
Ref: Saltsman and Halford (23)

Sample

Size, n

25

66

110

176

38

92

6-29

Sample
Me

an

.25

.87

.65

.02

.86

.67

91

71

Sample
Std.
Dev

5.81

1.89

6.96

17.0

5.09

3.89

2.03

Median

.933

cov

.891

.03

.15

.30

.16

.37

91

.34

19
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...Table 6.4 continued

AIST 304
PP + PC data only

Ref: Saltsman and Halford (23)

1Cr-1Mo-.25V; 540C
Normalized and tempered

Ref: Saltsman and Halford (23)

1Cr-1Mo-.25V; 485C
Normalized and tempered

Ref: Saltsman and Halford (23)

2.25Cr-1Mo; 540C
Annealed

Ref: Saltsman and Halford (23)

2.25Cr-1Mo; 540C
Normalized and tempered

Ref: Saltsman and Halford (23)

2.25Cr-1Mo; 485C
Quenched and tempered

Ref: Saltsman and Halford (23)

AISI 304; 650C
Solution annealed

Ref: Saltsman and Halford (23)

AISI 304; 565C
Solution annealed

Ref: Saltsman and Halford (23)

Rene 95; 1200F
Baseline Tests
Ref: Hyzak and Bernstein (24)

Rene 95
Verification Tests
Ref: Hyzak and Bernstein (24)

Rene 95
Validation Tests
Ref: Hyzak and Bernstein (24)

Sample
Size, n

26

12

17

17

12

15

13

42

13

16
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Mean

0.820

0.615

0.899

0.467

0.920

Std.
Dev.

.409

.293

.241

.190

.222

.367

.185

.830

.479

.327

Median

1.23

.928

.799

.579

.832

.436

1.04

.816

1.08

cov

.750

.408

.231

.198

.232

.360

.408

.395

.663

.520

.290



6.10 Statistical Distribution of &

The least squares program for distribution analysis as described in Section
2.5 was used to analyze tne data on A. The results are summarized in Table 6.5.

The model which best fits the data for each samplz2 is indicated by the box
in Table 6.5. The results show clearly that the lognormal is generally the best
fit model for the samples considered. It should be noted that this implies that

it is reasonable to assume that c.ycles to failure is lognormally distributed.

6.11 Summary Comments on Chapter 6

Provided in this chapter were equations, using the concept of damage,
which are used by designers to predict fatigue failure under both variable
and constant amplitude stresses. Statistical information on the distribution
of damage at failure was also presented. Summary statistics provide a quan-
titative description of the performance of Miner's rule. Statistics were
also provided to describe the behavior of the SRP model.

Given that uncertainty exists in all of the fatigue design factors,
the question now is how to use the damage equations to make decisions which
#ill produce a high reliability product. Chapter 7 will summarize elements
of modern structural and mechanical reliability theory, and Chapter 8 will

address specifically the problem ¢f fatigue reliability.
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Tatle 6.5

A Summary of the Best Fit Distripution for SRP Data on Damage
at Failure > Using the Least Squares Method

c=A -l
Samole  \oRMAL LOGNORMAL WEIBULL
Size, n
AISI 316; 705C (1300F)
Baseline tests ——
Ref: Saltsman and Halford (23) 25 .551 197 | .280
AISI 316
Verification tests
Ref: Saltsman and Halford (23) 66 731 .108 222
AISI 304
Verification tests
Ref: Saltsman and Halford (23) 110 .553 .124 .178
AISI 304 and 316
A1l verification test points
Ref: Saltsman and Halford (23) 176 772 .147 .237
AISI 316
PP + PC + CC data only
Ref: Salisman and Halford (23) 9 .484 179 | .146
AIST 316
PP + CP + CC data only
Ref: Saltsman and Halford (23) 8 .485 .332 ‘.320
AIST 316 .
PP + CP data only
Ref: Saltsman and Halford (23) 38 .715 141 .251
AISI 316
PP + PC data only
Ref: Saltsman and Halford (23) 5 .578 .282 . .370
AISI 304
PP + CP data only
Ref: Saltsman and Halford (23) 92 .566 152 .204

*
smallest value of ¢ indicates that distribution which best fits the data;
the box indicates the best fit
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...Table 6.5 continued

Sample  yorMAL LOGNORMAL WEIBULL
Size, n

AIST 304

PP + PC data only

Ref: Saltsman and Halford (23) 9 2.304 .423 .365

1Cr-1Mo-.25V; 540C

Normalized and tempered

Ref: Saltsman and Halford (23) 26 313 . .228 .257

1Cr-1Mo-.25V; 485C
Normalized and tempered

Ref: Saltsman and Halford (23) 12 .260 .417 .296
2.25Cr-1Mo; 540C

Annealed

Ref: Saltsman and Halford (23) 17 .247 .285 .29

2.25Cr-1Mo; 540C
Normalized and tempered
Ref: Saltsman and Halford (23) 17 .167 .245 .188

2.25Cr-1Mo; 485C
Quenched and tempered
Ref: Saltsman and Halford (23) 12 272 .231 .238

AISI 304; 650C
Solution annealed
Ref: Saltsman and Halford (23) 15 .420 {.265 l .434

AISI 304; 565C
Solution annealed
Ref: Saltsman and Halford (23) 13 221 l.212 .269

B

|

Rene 95; 1200F
Baseline Tests

Ref: Hyzak and Bernstein (24) a2 .622 1. 286 l .421
Rene 95

Verification Tests

Ref: Hyzak and Bernstein (24) 13 .218 .414 .268
Rene 95

Validation Tests A

Ref: Hyzak and Bernstein (24) 16 71 ,-109 i 191
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Chapte~ 7 A REVIEW OF MODERN PROBABILISTIC DESIGN THEORY

7.1 Introduction

An example cf a fatique reliability problem is provided in Table 7.1. The
design factors are treated as random variables reflecting uncertainties due to
statistical scatter in observations as well as assumptions made in the analysis.
The probability of failure is computed by solving a probability problem. If Ps
is less than Py @ predetermined maximum allowable risk, the design is considered
to be safe.

It is assumed that the condition for failure is described by an algebraic
expression. For example, from Table 7.1, the condition for fatigue failure is

YK [2(6QL/bh%) 1™ < N
Each term on the left hand side could be treated as a random variable. The gen-
eral goal of design is to select design variables so that the probability of
occurrence e.g. the above event, is acceptably small over the design life,

[t is the goal of this chapter to provide a concise summary of the tools
available for reliability analysis, i.e. computing the reliability or the proba-
bility of failure of an index thereof. A number of methods are reviewed. No
specific recommendation is made regarding a preferred approach. Indeed a relia-
bility analysis must be tailored to the design procedure, the data available, and
the way in which the results are to be used.

The following surmary of modern probabilistic design theory is based on the
articles by Hasofer and Lind (1), Ditlevsen and Skov (2), and the reports of
E17ingwood, - Galambos, MacGregor, and Cornell (3), Comite Europeen du Beton No. 112
(particularly the commentary by Rackwitz) (4}, and CIRIA No. 63 (5). Many of the
operations described are application of elementary probabiiity theory. Therefore
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Table 7.1
A SUMMARY OF A FATIGUE RELIABILITY PROBLEM

GIVEN: o) = Gsint
t) = Qsinw
(a) Stress 244 L > L
N"' 2 //i!h
Z 7
Z b

i JMe | aL
Stress Amplitude, S0 * 3 5%7

(b) Fatigue Strength of Material;NS” = K
where N = number of cycles to failure

(c) Design Life, No

(d) Design factors (Q, L, b, h, K, m)
are in general, random variables.

(e) Non-statistical uncertainty exists

i Due to the effects of manufacturing and assembly operations and use in
service
K = YKo

11 Due to assumptions made to compute fatigue stresses
S =75
.. O Y and I are random variables which describe this ‘professional”

uncertainty

FIND The probability of failure, pf

FORMULATION The event of failure is N < "o' The probability of failure is
Pe = PIN < No]
Substituting into the above expression for N,
= 2 -m 'd
Pe = P{YK [Z(60L/bh")]™™ < N }

We are left with what is, in general, a difficult probability problen
Moreover we must also define a safe level of risk P_. The design is
acceptable if p. ¢ p . °

o
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the reader is encouraged to have available a good elementary text in probability
theory and statistics, e.g. Meyer (6), Hines and Montgomery (7), Bowker and Lie-

berman (8), etc.

7.2 Basic Definitions

A basic assumption in the following discussions is that the i72ilure condition

can be written as an algebraic function,
R(X) < S(Y) (7.1)

where R and S, functions of several random design factors § and !, represent
strength and stress functions respectively. The assignment of factors to R and
S is often arbitrary. The tilde underneath the variable irdicates that the gquan-
tity is a vector (or multivalued). The design factors U = (5,!) can be separated
into the known random variables X and the design parameters to be determined ﬁ,
e.g., cross sectional area, sectional modulus, etc. Thus g = (!,5). Following
are the basic assumptions regarding g.

It will be assumed for simplicity that the standard deviation g5 = 0 for each
Ai‘ Geometric variances are usually small compared to others. Furthermore, it is
assumed that all Ui are independent. If two or more design factors are correlated,

then a transformation to uncorrelated variables may be made (1).

Define the failure surface or limit state as

g(U) = R(X) - S(Y) = 0 (7.2)

The failure surface is the boundary between the safe and the failed regions in
design parameter space. In general, there can be several limit states for a com-

ponent, e.g., yield, buckling, fatigue, etc.
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The failure function, g, is defined as

9(U) = R(X) - S(¥) (7.3)

~

and the failure condition (or failure event) occurs when S(Y) exceeds R(X). Thus

the failure condition is,
g(u) <0 (7.3)

For example, Figure 7.1 shows a single element, single load structure with
random design factors R and S. Here R and S are considered the basic variables.
The overlap in pdf's suggests that it is possible to select R and S at random
such that R < S and failure occurs.

Design parmeter space for this case is shown in Figure 7.2. The limit state

is R = S. The failure condition is R - § < 0, or simply R < S.

7.3 The Full Distributional Approach

It is assumed that the exact statistical distribution of each design factor

Ui is known.

The probability of failure {or risk) pf is defined as the probability of the

failure event,
Pe = Plg(U) < 0) (7.4)

For example, .f R and S are the basic variables, the probability of failure is
Peg = P(R-S <0)orP(R<S).

In general, P¢ can be computed as (3)

f

Ps =) y (u], - uk)du ... duk (7.5)

where Q is the region of U where g(u) <o, fU is the joint pdf of U, and k is

T Y ) 19 e et ey e e
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Q, load

0 0

- A, area

R, strength

S, stress
(Q/A)

.

f
(0]

S’
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f . pdf of strength
pdf R
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/ ~~""’-

Figure 7.1
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REGION

R T

Probability Density Function: (pdf) of
Stress and Strength

Failure Surface
\ (Limit State) R =S
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\
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L= NN
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S

Figure 7.2 Design Parameter Space wnen R and S are the Basic Variables.
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the number of design factors. In the special case where the two basic variables

are (R,S) and statistically independent, it can be shown that

"

1 —f fR(r)FS(r) dr (7.6)

0

Jﬂ fs(s)FR(s) ds

Pf

where f(-) = probability density function and F{-) = cumulative distribution
function. The subscripts denote the random variables.
Examples of CLosed Form Solutions

(a) Only one random variable. If S = SO, a deterministic real number, then

Equation 7.6 becomes,

Pe = P(R < Sp) = Fo(S) (7.7)

and if R = Ro’ deterministic with only S random,

Pe = PRy <S) =1 - F(R)) (7.8)

0 0

Example: Cycles to failure N of a component is known to have a Weibull dis-
tribution with parameters o = 3.58 and 8 = 21.25 thou-cycles. N is a "strength"
variable. The design life ("stress") is given as No = 12 thou-cycles. Compute
the probability of failure, i.e. if a member is selected at random, what is the

probability that its life will be less than 12 thou-cycles?

pe = (N < Ny = Fo(N,) (7.9)

1 - exp[12/21.25)3-8y

0.121

The pdf of N and p is illustrated in the following figure.



(R) The Normal Format: Assume all Ui have normal distributions and that the

limit state has the linear form. Let

~N
1

k
g(u) = A *.2131“1 (7.10)
1:

where A and Bi are constants.
From elementary probability thieory (e.g. Reference 7) the random vari:ble Z

will also have a normal distribution. The mean and standard deviation of Z are

= A+ ] B, o, = /18%;° (7.11)

The failure condition is Z < 0. The probability of failure is
pe = P(Z < 0) (7.12)

The probability density functicn of Z is shown in Figure 7.3. Using stan-

dard methods of calculating probabilities for a rormal variate,

pe = P(Z < 0) = P[? "Y1 < Eij (7.13)




{3

Figure 7.3

The Probability Density Function for Z

Z ~ Normal (uz,cz)
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= -
where & is the standard normal cdf, and
B = “Z/OZ (7.14)

3 is called the safety index. & is related to pc as shown in Figure 7.4. Note
from both Figure 7.3 and 7.4 that the safety index B plays the same role in pro-
babilistic design as does the factor of safety in conventional design, i.e., the
larger is B, the smaller is the risk, or P

Example of the Normal Format: Consider the tensile bar of Figure 7.1.
Stress, S = Q/A where Q is a random load variable having mean H and standard
deviation oq. The strength of the bar R is considered as a random variable having
mean and standard deviation of Hp and Op- Compute the probability of failure.

The mean and standard deviation of Z is, (from Equation 7.11)

My = up - uQ/A (7.15)

o, = /cR2 + (oQ/A)Z (7.16)

Then,

Pe = o(-8) (7.17)

where 8 = uz/cz.

(c) The Lognormal Format. The lognormal distribution plays an important role

in probabilistic design and in particular for problems which involve fatigue.
Properties of the lognormal distribution are summarized in Table 2.5 with a more
complete discussion in Appendix 1.

Consider a restatement of the 1imit state and a redefinition of g. Let,
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g(U) = R(X)/S(Y) =1 (7.18)

Now the failure condition is g < 1. Assume that (a) al Ui have lognormal dis-

tributions, and {b) g(U) is a multiplicative function of the design factors
K
g(l:l) =.§18 U. 1 (7.19)

where B and alil a, are constants. Let Z = In g.

K

Z=1nB+]

1 ailn Ui (7.20)

1

Because Ui is lognormal, it follows that In Uiis normal. Then this format be-
comes identical to the normal format.
The failure condition is g < 1 or, as above, Z < 0. The Ps is given by

Equation 7.17 with B = u,/oz, and

T . ‘l
wy=Z=1Ing-= 1n‘1-218 Uiaij (7.21)
2
2 _ K 2\a,
gy = In 1.{__{](1 + Ci )i

where the tilde indicates a median value and Ci is the coefficient of variation
(cov) of Ui' For a random variable X, the median and cov in terms of the mean

Hy and standard deviation gy are respectively,

K= w1+ 6% Ty = oy/uy (7.22)

See Appendix 1 for additional detail.
The lognormal format is particularly useful in fatigue design because some

of the important equations tend to be multiplicative.



Example: The 1imit state for fatigue under a stationary gaussian process having

RMS, o is (see Equation 6.29)

A= X (723)

where A = No(/Z)nF(m/Z + 1), a constant. 4, K and ¢ are random variables. Fail-

ure occurs when the right hand side (stress) exceeds the left hand side (strength)

g(u) = 25 (7.24)
- Ac

failure occurs when g < 1. The mean value of 7 is,

by = In(2K/AC™) (7.25)

where the tilde indicates median values. Note that for th: lognormal, the mean

L1Xand the median X of the random variable X are related by X = ux//1 + CXZ.
Also

2
o, = [In{(i + ¢+ B+ ¢ Hm '/ (7.26)

Then 38 and pe are determined by Equation 7.13 and 7.14.

7.4 The Full Distributional Approach: Monte Carlo Methods

Consider a complicated design problem having a limit state, for example,

Z=g(u) = (AX3/YP) + cUSTaV + K =0 (7.27)

~

in which A, C, a, b, c, and K are constants and X, Y, U and V are random variables
having a Weibull, normal, lognormal and gamma distribution respectively. Evalua-
tion of Pe using Equation 7.5 is a practical jmpossibility.

Monte Carlo methods, however, can be used to obtain approximate solutions to

complicated probabilistic design problems as described above. Estimates of the
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distributions of complicated functions of random variables can be used to evaluate
risk.

Monte Carlo methods are widely used, and only a demonstration will be pre-
sented as follows:

Example: Cycles to failure in low cycle fatigue for AISI 316 stainless steel

is given as

-1.71

N = AG(¢) (7.28)

L 4

where A, G and € are lognormally distributed random variables naving tne following
values for the median and coefficient of variation.
Median cov

A 1.00 0.30
G 0.222 0.593
€ 0.015 0.30

The design life is given as No = 40 cycles. Determine the probability of failure.

The Timit state is N = N_, and the event of failure is (N < N,)- Thus
Pe = PN < N) (7.29)

An estimate of the cdf of N can be made by first sampling K values of A, G
and € at random from the lognormal. These values are used to compute a sample
of size J of N from Equation 7.28. Statistical analysis of N can include esta-
blishing the empirical cdf. For the above example the empirical cdf is automa-
tically plotted as shown in Figure 7.5. The plot shows an estimate of Pe = 0.0054.

A closed form solution to the above problem is available (See Appendix 1 ).
However, if for example A had a lognormal, K had a Weibull and ¢ had a normal,
establishing the distribution of N by analytical methods would be a practical
impossibility. Nevertheless, the approximate Monte Carlo solution is no more

difficult than that of the above example.
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7.5 First Order Second Moment Methods

In the full distributional approach described above, it is assumed that each
design factor has a known distribution. However in practice, these probability
laws are seldom known precisely because of a general scarcity of data. In some
cases only the mean and standard deviation may be known with any confidence and
even if the distributions of all design factors are known, it is usually imprac-
tical to evaluate Equation 7.5.

The difficulties above have motivated the development of first order second
moment (FOSM) reliability methods. The random variables are characterized by
their mean and standard deviation.

The basic measure of reliability is the safety index B = uz/cz. From exam-
ination of Figure 7.6 it is clear that g8 as a measure of safety can be employed
for any g(g) and any distribution of each Ui' However Z has a normal distribution
and Equation 7.13 for Pe applies only for the linear form, Equation 7.10.

Determination of Hy and oy where Z = g(g), a complicated function, is in
general very difficult. However these terms are relatively easy to evaluate if
g(g) can be linearized by a Taylor's series expansion about g*. Excluding higher
order terms,

) (7.30)

*
Z=g(U)+ ;

‘l:

~3
—

(39/3Ui)g*(Ui - U

It is now a relatively simple matter to compute My and Tzs but a key consideration
is selection of the appropriate linearizing point g*.

Mean Yalue Methods. In earlier structural reliapility studies, the point g*
was set egual to the mean value ue Assuming that all U, are independent, it can

be shown that

#Z = 9(5)
gy = [Z(%% )S ci2]1/2 (7.31)

0 s o A AR vt 431 e ——



Figure 7.6
Relationship with Safety Index to Risk and to ~7 and =,

Failure ~ Z = g(U) <@

Mean and Standard Deviation of Z;

uy = Efg(U)] oz = [Var[g(U)]

Safety Index;

B = “Z/GZ
Changes in iy (larger) and Iy
(smaller) to increase 2, will
fZ(z) decrease Pgs-e- for any distri-
qu - bution of Z.




where a; = the standard deviation of Ui‘
Exampie: Consider the tension bar of Figure 7.7. C(ompute the safety index.
Z =g(U) = g(R,A) =R - Q/A (7.32)

~

Note that the function g is formulated so that the 1imit state is Z = 0 and the

failure condition is Z < 0.

uz = 9lugsky) = ug = Wy (7.33)

with the partials evaluated at the means.

2
Gzz = ORZ + (Q/uA )ZGAZ (7.34)
Substituting the values from Figure 7.7 My = 26.3 and g, = 6.45. Thus
B = uz/oZ = 4.07 (7.35)

Evaluation of 8 for this case was relatively easy. Even for more complicated
limit state functions the operations are not 1ifficult. On the other hand there
are significant limitations and criticism of mean value first order second moment
methods which have focused on the following:
(a) In this approach, the measure of safety is 8, which in some cases gives
weak information on the probability of failure,
(b) Information on distributions, if available, cannot be included in a
logical way,
(c) The linear approximation of g(U) at the mean of the various variables

-~
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Figure 7.7
DATA FOR EXAMPLE PROBLEM

Q
<:::%:::] STRENGTH, R
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appears to be too inaccurate in the face of severe non-linearities of this
function in many design situations, i.e., the higher order terms in the Tay-
lor's series exparsion are important.

(d) Equation 7.31 for Uz and gy is valid only for relatively small variances
(typically for Ci < 0.15). In the fatigue problem most design factors have
“large" variances, ... again the higher order terms are important

(e) and the most important, the method fails to be invariant in that 3 depends
upon the mechanical formulation of the problem.

The lack of invariance probiem can be illustrated using the above example.

Note that an equally valid statement of the failure condition is
Z=RA-Q<0 (7.36)

Using procedures described above,
UZ = URUA - Q (7.37)

97

Substituting values from Figure 7.7 = 73.6 and g, = 19.4 and B8 = 3.79.

s M
JA
Different values of 8 are obtained from two equally valid statements of tne
failure condition. It is principally this problem with the mean value method

that led to the development of the generalized safety index (1).

Advanced First Onder Second Moment Methods. It is now recognized that 8 will
be invariant to formulation if the linearization point g* is chosen as a point on
the failure surface. The following discussion describes how to compute the genera-
1ized safety index and to establish the appropriate g*.

Hasofer and Lind have proposed a general approach which is exact and invariant

to mechanical formulation (1). As an example, consider R and S as the basic
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variables. In Figure 7.8 the probability of failure Pe will be the volume under

the joint density function in region Q. Perform a transformation; define the

reduced variables:

r=(R-u)isg S = (S - ug)iog (7.38)

r and s have means equal to zero and standard deviations equal to one.

Figure 7.9 shows the space of reduced variables. Note that again Pe is the
volume under the joint density function in Q. Thus the distance 4 = 0P is a
measure of reliability. As the failure surface moves to the right, Ps gets smaller

and A gets larger. Therefore A is a measure of reliability. Furthermore from

geometric considerations
- (. ‘ , 2 2
A= (LR = Ls)/ GR + OS (7-39)

which is exactly the same as 8 obtained from Equation 7.31 for g =R - S.

The design point is defined as the point on the failure surface closest to

the origin of the reduced coordinates. In the above example it would be the
point (s*,r*) as shown in Figure 7.9. The design point in the basic variables is
then determined by inverting the original expression, e.g.. R* = r*oR + ug from
Equation 7.38.

Define the generalized safety index, 8 as the minimum distance from the

origin of the reduced variables to the failure surface

e 2 2 2
Subject to g(U) = 0, where the reduced variables in terms of Ui are

u, = (U, - u;)/o; (7.47)
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Such a procedure will produce a design algorithm which is invariant to formulation

because the failure surface is the same regardless of hcw it was written. Figure
7.10 illustrates the failure surface in two dimensions. Ui are the reduced varia-

bles.

Another viewpoint of this problem is to consider the system of equations (8),

ag-/au. (7.42)
Q. = .
U1 = "a,iB

*
gi(u; ) =0

where 8 is the distance to point u on the failure surface 9, in reduc-d coordi-
nates. 1, is the direction cosine of the lth coordinate relative to u . These
systems of equations are solved for the ai's and ! which minimizes 3.

It is also possible to redefine any or all of the basic variables by making
a log transformation U% = 1In Ui' Then, the mean and standard deviation of U’

are (assuming the lognormal distribution moments)

- 2y -
Wyt = In Wy - 1/2 In (1 + CU ) = inU (7.43)

/ 2

In (1+ CU )
For convenience, the subscript "i" has been dropped. The reduced variables are
u=(u'- wy) /oy (7.44)

so that the original variables in terms of the reduced variables are
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Figure 7.10

Generalized Safety Index in Two Dimensions

| FaTLED REGION e
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; U= expli+ UJUO (7.45)
|

In general the log transformation would be performed on large variance
design factors, and in particular would be useful in the fatigue problem.
To compute 3 one must in general perform an optimization calculation. The

author's experience is that most failure surfaces are well behaved and as a

result, convergence to an accurate (four place) result using a relatively crude
optimization algorithm, requires a ﬁ;gligable amount of computer time, even for
several design variables.

Example: Consider the problem of Figure 7.7. The two valid expressions for

the failure surface are
Z=R-QA=20 (7.46)

=RA..Q=0
The reduced coordinates are
r=(R- uR)/GR a=(A- “A)/UA (7.47)

Using the values in Figure 7.7 and substituting for R and A into either of the

expressions for Z, the same expression for the limit state results
91(r,s) = (62 + 6.2r)(2.8 + .14a) - 100 = O (7.48)

This function is plotted in Figure 7.11. Also shown is 8, the minimum distance
to the failure surface as well as the design point (a*, r*). Here the values were
determined graphically.

Note that from Figure 7.10, the procedure for determination of 3 is equiva-
lent to linearizing the limit state equation at Q* and computing 3 associated with
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Figure 7.11

GRAPHICAL DETERMINATION OF THE GENERALIZED SAFSTY
INDEX FOR THE PROBLEM OF FIGURE 7.7.
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the linearized rather than the original limit state. From Equation 7.30,

it can be shown that

*

g 7 B = MGGyt - V) (7.49)

Il c~

;% = EL(Z - uy) )21 =7 (32/30;) > (7.50)

((: [
-J

In the above example of Figure 7.11 R* = 38.0, A* = 2.632 and 8 = 4.05 in
both formulations.

In summary, the generalized safety index B provides a measure of reliability
for which is invariant to the mechanical formation of the limit state. It is
necessary to specify only the mean and standard deviation of each design variable.
The 3 so defined contains in general, weak probability information. However, if
the variables are normal or lognormal (and the log transformation is used), then
Pe = d(-8) is a good approximation to the exact probability of failure as would

be computed by Equation 7.5.

7.6 Extended Form of the Generalized Safety Index

The procedure described in the previous section gives values of 3 which may
be related to the probability of failure only in those special cases where design
factors have normal or lognormal distributions. But many design problems involve
random variables having other distributions e.g. Weibull. Computation of the
probability of failure in the general case of a non-linear limit state and design
variables having arbitrary distributions can be accomplished by a very complicated
numerical integration (Equation 7.5) or by Monte Carlo methods. Neither method
is practical for general design application.

In 1976 Rackwitz has proposed an extension of the generalized safety index
concept (6,7,7,12) in which appropriate distributional information could be

incorporated. The basic idea is to transform the non-normal variables into
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egquivalent normal variables. This transformation may be accomplished by approx-
imating the true distribution of variable Ui by a normal distribution at the
value Ui* corresponding to a point on the failure surface. The justification
for this is that if the normalization takes place at the point close to that
where failure is most likely, (i.e., minimum 3), the estimates of the failure
probability obtained by the approximate nrocedure should approximate the true
(but unknown) failure probability quite closely (6).
The mean and standard deviation of the equivalent normal variable are

determined such that at the value Ui: the cumulative probability and probability

density of the actual and approximating normal variable are equal. Thus,

-1 *
o < #(F LFy(U)) (2.24a)
A
N T g
BTN SN (NPT (2.28b)

in which Fi and fi = non-normal distribution and density function of Ui and
»(-) is the density function for the standard normal variate. Having deter-
mined u? and 0? of the equivalent normal distributions, the solution proceeds
as described in Equations 7.40 to 7.42. Inasmuch as the checking point
variable U; changes with each iteration, the parameters u? and c? must be
recomputed during each iteration cycle also. However, since all calculations
are performed by computer, this does not materially add to the complexity of
the reliability analysis described earlier.

[t has been observed that this approximate technique often yields excel-
lent agreement with the exact solution, e.g. as obtained by Equation 7.5 (6.12).
However, it has been noted (15) that the checking point may not correspond
exactly to the point where the joint probability density is maximum and failure

is most 1ikely. However, this procedure does not reduce the error which is due
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to the linearization of what may be a generally nonlinear failure boundary
at the design point. Unless the failure boundary is highly nonlinear, how-
ever, as is the case in some stability problems, this source of error is
small compared to the accuracy with which most of the parameters in engineer-
ing reliability analysis can be estimated.

A computer code using the Rackwitz algorithm has been written as an
activity of this study (called SUPER-HASL). An example which illustrates
the efficiency of this algorithm is presented in Section 8.4. In this demon-
stration, the probability of failure is computed at roughly 1/6 of the cost
of Monte Carlo.

SUPER-HASL has only recently been developed. The efficiency and accuracy

of the Rackwitz algorithm will be investigated in future studies.

7.7 Summary Comments on Target Reliability Levels and Technique

Important questions have not been addressed in the previous discussion. Fol-
lowing are answers to some key questions regarding implementation of reliability
methods.

How Much Congdidence Can We Put Into pé?

A computed value of probability of failure Pe should be interpreted as an
"index" of risk rather than an actuarial prediction. Pe Can be sensitive to the
many assumptions used that one may have little confidence in the quality of the
point estimate of Pe- An ostimate of Pe is sometimes called the '"notional pro-
bability of failura". In practice, 8 is now more commonly used (See Ref 4).
What Should be a Target Value of B (or pé)?

The target design value of 3, denoted as 30, depends entirc 'y on the appli-

cation. Values of 3 implied in current codes and procedures typ tally range from

2.0 to 6.0. The value of Bo = 3.0 has been suggested for general construction (4).
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To establish 50 tne engineer can (a) attempt to evaluate 3 inherent in current
design procedures as a reference, and (b) use ar implied relationship between 2
and Pe assuming that Pe accurately describes risk. Ultimately the designer has to
use his judgement and experience in making a decision regarding acceptable levels.

Cant We Provide a General Reliabs?{ty Methed Tht Can be Used Fen ALL Cases?

[t is impossible to recommend a gererci procedure which can be used in all
cases because each class of problem seems t2 have its own unique characteristics.
A reliability method must be tailored to the sit ation. However some general
observations can be made from the above discussion. A summary of procedures

available for each problem type is provided in Table 7.2.
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Table 7.2
A SUMMARY OF METHODS OF PROBABILISTIC DESIGN

Form of the Failure Function
Z=g(u)

Reliability Method of Preference

A stress and strength variable have
known distributions

Linear (Equation 7.10); all design
factors normal

pf(can be computed by numerical integratio:

Equation 7.5)
Z is exactly normal and p_ can be computed
exactly (Equation 7.13 anc 7.14)

Multiplicative (Equation 7.19);
all design factors lognormal

Z =1ng is exactly normal and p, can be
computed exactly (Equation 7.13 gnd 7.14)

g is any function; all design factors
have known distributions

Monte Carlo method; a relatively easy
method for estimating p, but unweildly for

a designer; the Rackwitz algorithm may be th

g is any function; all design factors
have known means and variances but
the variance is small (COV < 0.15)

bes!

The mean value first order se_ond moment
method provides an easy approximate
method to evaluate 3.

g is any function; all design factors
have known means and variances; if
variances are large, use a log trans-
formation on each factor

The generalized safety index can be
computed using a digital computer code
(Ref 2,6).

g is any function; some design factors
have known distributions but others
have only means and variances known.

The generalized safety index can be com-
puted. A digital computer program is
required. The method of analysis is not
described herein, but is provided in
Ref. 6.
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Chapter 8 DEMONSTRATION OF RELIABILITY ANALYSIS TO FATIGUE PROBLEMS

8.1 Preliminary Remarks

Fach design and safety check problem seems to have its own unique features.
Therefore it would be difficult to propose a general reliability format which
could be used in all problems.

Three examples, presented in this chapter, illustrate how some of the relia-
bility methods discussed in Chapter 7 can be employed in fatigue problems. The
examples treat models used to predict high temperature low cycle fatigue. The
first uses strainrange partitioning to define the limit state and the second

and third use the local strain approach.

These examples do not exhaust available reliability methods but provide only

a sample of the possibilities.

8.2 Example 1; Strainrange Partitioning in a Reliability Format. *

Consider a component for which high temperature fatigue analysis is performed
using strainrange partitioning. Only PP and PC strains are present. The limit

state is

A=Norfpp + Foc ] (8.1)
G(ae)Y  H(ae)"

See 3ection 6.5 and 6.9 and Reference 1 for definition of terms. The data for
all parameters are given in Table 8.1.

The right hand side of Equation 8.1 is damage at the design life No' Fail-
ure occurs if this exceeds A, the damage at failure. Thus the left hand side can
be considered as "strength" and the right hand side as "stress".

The random variables A, G, H, and Ae are related in such a way that a closed
form solution for probability of failure, e.g. using Ecuation 7.5, would be
extremely difficult. In lieu of this, two approximate techniques for reliability

analysis are pursued.
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Random Variables (all assumed to be lognormally distributed)

Table 8.1
Data for Example 1

500 cycles, design life

0.70
0.30

-1.711

-1.188

Median Coefficient of Variation
A 1.0 0.30
G .222 0.406
H 1.673 0.393
Ae 0.02 | 0.300
8-2
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1. The generalized safety index can be computed. A log trarsformation is per-

*
formed on all four variables. A digital computer code (HASL) is employed.

The output is presented in Table 8.2. The computed safety index is 3 = 4.08.

The generalized safety index provides a good approximation to the probability

of failure using Pe = ®(-B) when the design factors are normal or log-

* %
normal, even though the 1imit state is not linear in the design variables .

Here p. = 2.28 x 107°. (See Figure 7.4)

2. The Monte Carlo method can be used to estimate the probability of failure.

Equation 8.1 can be rewritten as

n=asffee Fec ] = N (2.2)
[5(ae)"  H(ze)"

N is a random variable denoting cycles to failure. Failure o.curs if N < No.

The Monte Carlo method (Section 7.3) is used to obtain a random sample of N,

the distribution function of which is plotted on lognormal probability paper

in Figure 8.1.

Graphically extrapolating the empirical distribution function to N0 = 500
cycles, the inverse cdf, equal to -B, indicates that 3 = 3.9. The ccrresponding
pe = 9(-3.9) = 4.85 x 107°.

Considering the degree of extrapolation required for the Monte Carlc method,

it is not surprising that there is only fair agreement between the two methods.

*
See Section 7.4 for the description of the generalized safety index.

*x
Just how good this approximation is, in general, is presently under study.
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Table 8.2

Output of HASL(d)--A Program for Computing the Generalized
Safety Index--for the Example of Table 8.1.

DESIGN VARIABLES

VARIABLE TRANSFORMAT ION(3) MEAN/MED TAN (D) 5TD DEvscay (C)
CDELTA e .. «10000E+01 eee .. »30000E+00
6 1 «22200E+00 «40600£+00
__EPSIN L +20000E=02 __ ___ ,310000Ee0Q
H 1 <16730E+01 . +39300E+00
T T T T T s ton roma o
TVARYABEE T T REDUCED VELUE BASTC VALUE
DELTA XR(l)s =2,02318 X(l)e .55215€+00
3 L OXRTZY S TELLESIY X12¥s  1239%E+00 =
EDSLN XR(3)s  2.99219 X'3)® .48160E=02
3 RTZVE T 2I016406 ™ ™ X (4Tw " TTOTSEEN O — —

—— . — i . o - el— e ——— - - o —— —_—

SAFETY INDEX, 3ETA = 4,07832

NOTES:

(a) HASL is a digital computer program developed by P. H. Wirsching, University
of Arizona, for computing the generalized safety index

(b) A ™" indicates a log transformation on each variable

(c) With a log transformation, the listed values are the Median and the coy
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8.3 Example 2: A Local Strain Analysis Problem

in a Reliability Format

A fatigue life estimate is required for a turbine disk. It is assumed that
the fatigue crack will initiate at a notch in the rim provided for a blade as
indicated in Figure 3.2, Stress and thermal analyses based on the definition of
a duty cycle (one flight) will provide the normal stress S as well as the equi-
valent stress Yo T KtS and the temperature 2t the notch as a function of time.

A typical stress and temperature history shown in Figure 8.3 shows that the peak
stress will not, in general, occur at the same time as the peak temperature.

Generally speaking, in the event of cyclic plasticity at a notch, the local
strain approach to fatigue life prediction (1, 2, 3) would be the method of pref-
erence. The most serious limitation to such an approach in dealing with high
temperature is that the strain life relationship must be based on a given constant
temperature,

Application of the local strain approach to high temperature fatigue prob-
lems has considerable appeal. This approach to fatigue 1ife prediction is now
commonly used by mechanical designers in many fieids. Analysis methods are well
developed, including life prediction of components subjected to random loads
and having notches which experience cyclic plasticity. While this method canrot
explicitly treat the synergistic effects of creep and fatigque, life estimates
may be reasonable for those components where creep effects may be small in com-
parison to fatigue. This may be the case for example for some turbine hot section
components where cycle lives of the order of 10* are anticipated.

Following will be a demonstration of how reliability anaiysis methods, pre-
viously described, can be applied. First, it is necessary to identify sources
of uncertainty in the life prediction process.

- .
Lasiranment
—_—

1. The use of the "duty cycle" to represunt operational conditions.
2. The temperature of the hot gases.
3. The use of an equivalent temperature.

v Yt o ~aya
MAZePtle 2enaVor

1. Effect of strain hardening (or scftening).
2. Accuracy in the cyclic stress strain curve used.
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Figure 3.<
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3. The use nf Neuber's rule to chbtain tne nominal stress-notcn strain

curve.

4. Basic fatigue behavior as evidence by statistical scatter in strain-
life data.

5. Effect of surface finish, size effect, grain directions, etc. on the
strain-life curve.

6. The assumption to include (or not include) mean stress relaxation.

Analys s

1. Accuracy of heat transfer analysis.

2. Stress analysis procedures (including thermal stresses) to determine
inelastic notch strains or elastic stress concentration factors.

3. Procedure used to establish the stress-strain history at the notch.

It will be assumed in this demonstration that the service nominal stress
varies from zero to peak S as shown in Figure 8.4. The equivalent stress at the
notch also varies from zero to a peak of Jg = KtS where Kt is the theoretical
stress concentration factor. The equivalent and assumed constant temperature is
denoted as T.

Knowing the cyclic stress strain curve and applying Neuber's rule, the actual
stress strain (o - c) curve at the notch can be established using standard methods
of local strain analysis {1, 2). As illustrated in Figure 8.5, the resulting o-¢
history so established will define the strain range Ac and mean stress T ? the

information needed to compare with the strain-1ife relationship.

The strength of the material at a given cycle life N is defined by the general

expression : , |
Se - ¢ '
8 [‘"“‘T—:‘“‘“‘ (2N)° ef(ZN)C] (8.3)




Stress at Notch
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Figure 8.5

Stress-Strain History at Notch for a Given Temperature T
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(See Reference 3)
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Heuber curve using Point A as origin
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in which ®a is strain amplitude and S;, b, a; and ¢ are empirical constants. The
term in brackets is the familiar strain-life relationship (4,5). B is a random
variable which accounts for the scatter in fatigue data. Using this form, it is
assumed that the standard deviation of log (strain) given N is a constant (See
Section 5.3 for further detail).

The mean stress is I and will be a function of both temperature T and the

K,S

equivalent stress at the notch Oe t

>

Q
[}

om(T,Kt,S) (8.4)
Similarly the service strain amplitude €g will be a function of T, Kt and S.
= Ae/2 = €S(T’Kt’s) (8.5)

Consider operation to a given design life No' Failure is said to occur if

"strength" is less than "stress". The event of failure is €4 < gg OF

S. - 5 (T,K..S) b c )
B{[f Jrg t }(ZNO) + ep(oN ) } < £g(T,K,.S) (8.6)

In this example, it is assumed that both Kt and S are random variables re-
flecting uncertainty in analysis procedures. Both Kt and S will be the same for
each cycle, but there is uncertainty in the value. Temperature T may be the most
important variable but it is assumed to be constant just for the purpose of this
demonstration. No theoretical difficulties would be introduced by considering T
as a random variable.

Data for this problem is summarized in Table 8.3. The stress strain history
shown in Figure 8.6 obtained using Neuber's rule (see Reference 3) shows that
only elastic strains are present after the first cycle. Assuming no mean stress

relaxation, the stress strairn history will cycle between points B and C as the
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Random Variable

Kt

S

Constants

Table 8.3

Data for Example Problem

Median Coefficient of Variation

3 0.06
40 ksi (276 MPa) 0.10
120 ksi (827 MpPa) 0.117
1 0.18

No 5000 cycles

S 210 ksi (1448 MPa)

b -0.07

> 1.20

¢ -0.70

E 30,000 ksi (207 GPa)

*
From basic properties of lognormal variates

~

-
)

= KtS

N 2 2
COV(Je) = {1 + CKL(I + Cs) -1




Figure £.9

Determination of Actual Stress-Strain History at Notcn
for Nominal Stress, S = 42 «si
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nominal stress cycies befiwéen 0 and S. From a graphical analysis, {See Figure 8.6

for various values of S) it is shown that

Az/2 = KtS/ZE = KtS/60,000 (8.7)

4]
(2]

In
~

m

52.0 ksi (359 MPa) for any S

Two methods of reliability analysis are used. In both it is assumed that Kt’
S and B have lognormal distributions.
1. The Monte Carlo method;

Fatigue strength (strain at failure) is defined by Equation 8.3.

Noting that S is constant, it follows upon substitution of the values of

Table 8.3 that
€y T B(0.00467)

@
4
3
*i

Service strain is given by Equation 8.7. Failure occurs when

B(0.00467) < KtS/G0,000

Isolating the random variables on the left hand side, the condition of

failure is

V= B/KS < 3.6x 107

Values of Kt, S and B are selected at random from lognormal distributions

having the parameters as given in Table 8.3. Then a sample of V is computed
and its empirical distribution function is established as shown in Figure
8.7. The figure shows the estimate of the safety index as 4.10 and the
probability of failure as p; = 2.09 x 107
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2. The cenmeralized safety index;
HASL was used to compute the generalized safety index, 2 = 3.97. A Tog
transformation was made on all variables (See Section 7.4). The corresponding

5

= 3.51 x 16°°. The output is shown in Table 8.4. This problem satisfies

Pr

the assumptions of the lognormal format (See Section 7.2) and therefore HASL

will provide the same result as the closed form expressions (Equations 7.20,

7.21, 7.13 and 7.14). Moreover, the Monte Carlo solution should agree. The

slight difference in results illustrates the error that is possible in extra-

polating the distribution function into the tail regions.

In both cases an index of structural performance was computed. The decision
with regard to safety must now be made by the designer.

As a footnote to this problem, consider the overall reliability of the disk.
The estimate of fatigue crack initiation at a given site was Pe = 3.51 x 10'5.
But assume that there are n = 36 blades (i.e. n = 36 initiation sites). The key

question is what is the probability of crack initiation at any site?

This is a standard reliability problem, i.e. a series system where failure

of the disk is assumed to occur if failure occurs in any component. System
reliability is n
Re =1 R, = 1 (1-p) (8.8) 3

h

where Ri = reliability of it component and p; = probability of failure of ith

component. If P; = constant, as it is in this example

Rg = (1 - p)" (8.9)
In this example Rg = (1 - 3.51 107536
= 0.99874 ‘
= 0.999

8-16




Table 8.4

Qutput of HASL(a), A Program for Computing the Generalized
Safety Index for Example 2

VARTABLE
8
KT
)

VARTABLE
B
KT
S

DESIGN VARIABLES

b o c
TRANSFURHATIDé ) MEAN/MEDIAN () STD DEVICOV()
1 1100005001 «18000E+00
1 +» 30000E+C1 «+60000E-01
1 e 4000JE+02 «10000E+00
DESIGN POINT

REDUCED VALUE
XR(1)s =3,33459
XR(2)= 1.11914
XR(3)= 1.861133

SAFETY INPEX, BETA = 3,97850

NOTES:

BASIC VALUE
X{1)s +55132E+400
X(2)s .32082€+01
X{3)s L48152E+02

(a) HASL is a digital computer program developed by P. H. Wirsching, University
of Arizona, for computing the generalized safety index

(b) A "1" indicates a log transformation on each variable

(c) With a log transformation, the listed values are the Median and the Cov



Thus we would predict that only about 1 in 1C00 of these disks would initiate

a fatigue crack at the notch.

8.4 Example 3: A Demonstration of the Efficiency of the Rackwitz Algerithm

The Rackwitz iteration method, as described in Section 7.5, was presented
as a method for efficiently computing estimates of probabilities of failure
for structural and mechanical components. The statistical distribution of
each random variable is specified. The 1imit state can take any form,
although risk estimates are expected to be slightly in error for non-linear
cases.

Following is an example which illustrates the efficiency of the Rackwitz
algorithm as compared to Monte Carlo. In this example, computer costs for
the Monte Carlo solution were six times greater.

Consider a fatigue problem in which the fatigue strength is defined by
the general strain-life relationship. Cyclic strain < at a notch has a
constant amplitude (not random), but there is uncertainty regarding its mag-
nitude. Mean stress % also remains constant, but its value is uncertain.

The 1limit state is written as

S - g '
e = —f—E—m(ZN)b + e (2N)° (8.10)

The right hand side of the equation is fatigue strength. A1l terms have
been defined previously in Sectiorn 5.3. Failure occurs if the strain (left
hand side of Equation 8.10) exceeds the strength.

Values of the design factors are given in Table 8.5. Note that €gs s',
5;, and O are considered to be random variables. They have different

distributions. In general it would be very difficult to compute the proba-

bility of failure Pe using the exact form of Equation 7.5. However two
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Table 8.5

Values of Design Factors for Fxample Froblem

Design Life, N = 10% cycles
Modulus of Elasticity, E = 29,500 ksi
Fatigue Strength Exponent, b = -0.108

Fatique Ductility Exponent, ¢ = -0.540

Random Design Factors Distribution Mean Standard Deviation
Fatigue Strength Coefficient, s.  Lognormal® 148 042
Fatigue Ductility Coefficient, e; Lognorma1* .49 .263

Strain Amplitude, € EVD .002 .0003

Mean Stress, O Weibull 20. 2.

*Values of the mean and standard deviation stated for the lognormal are really

median and coefficient of variation respectively.



approximate methods will be employed to estimate Pg-

The Monte Carlo solution is presented on Figure 8.8. The safety index
determined graphically 1is approximately 3 = 2.95. The corresponding Pe =
0.00%6.

Solutions using the Rackwitz algorithm using SUPER-HASL is summarized
in Table 8.5. Note that the results are essentially the same. In this
example, the approximate costs of running the Monte Carlo program and SUPER-
HASL were $4.00 and $0.70 respectively. Moreover, computer core reguirements
for SUPER-HASL are very modest. The program can be operated on a small
computer.

The quality and efficiency of the Rackwitz algorithm will be the subject

of a continuing study.

8.5 Summary Comments

The three examples provided in this chapter demonstrate application of
fatigue reliability methods. The approach chosen however depencs upon the
statistical information available as well as the form of the limit state.

This report is considered to be preliminary. Additional examples are

being ronsidered and will be ijncluded in future reports.

8.6 References for Chapter 8
Fatigue Under Complex Loading, SAE, No. AE-6, 1977.

Dowling, N.E., "Fatigue Life Predictions for Complex Load Versus Time Histories",

to appear in Decade of °rogress in Pressure Vessels and Piping, ASME.

Socie, D.F. and Morrow, J.D1, "Review of Contemporary Approaches to Fatigue
Damage Analysis", FCP Report No. 24, The University of I1linois, 1976.

Fatique Design Handbook, SAE, No. AE-4, 1968.

Fuchs, H.0. and Stephens, R.I., Metal Fatigue in Engineering, Wiley, 1980.
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SUPER-HASL* EFFICIENT ITERATIVE SCHEME FOR COMPUTING PROBABILITIES OF FAILURE:
R. RACKWITZ, Technische Universitat, Munchen, Germany (1976)

LHPUT DESIGN VARIABLES
VARIABLE MEAN/MEDIAN STD DEV/COV
ES(E,) EVD .20000E-02 .30000E-013
SF(S}) LOG . 14800E+03 .42000E-01
SM(a,) WEIBULL . 20000E+02 .20000€+07
EF () LOG .49120E+00 .26300E+00
RESULTS DESIGN POINT
VARIABLE REDUCED VALUE BASIC VALUE
ES XR(1) = 2.47612 X(1) = .30365E-02
SF XR(2) = -.26978 x(2) = .14633E+03
SM XR{3) = .08325 X(3) = .208U2E+02
EF XR(4) = -1.53516 X(4) = .33024E+00

SAFETY INDEX, BETA = 2.92711
PROBABILITY OF FAILURE = .001716

*
Computer program developed by Colleen F. Kelly, graduate student in Aero-
space and Mechanical Engineering at the University of Arizona
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APPENDIX 1 THE LOGNORMAL DISTRIBUTION AND PROPERTIES OF LOGNORMAL
VARIABLES

The lognormal format is proposed herein as a structural reliability
model. In this regard Appendix 1 provides, for reference purposes,

a detailed description of the lognormal distribution as well as certain
properties of lognormal variables that are used for the design equatiors.
Additional information on the lognormal is given by Benjamin and Cornell
and Ang and Tang¥*.

Given a random variable X, If Y = In X (or 10910 X) has a normal
distribution, then X is said to have a "lognormal" distribution. The
mean and standard deviation of X and Y are (ux,cx) and (“Y’GY)
respectively. The probability density function (pdf) of X is

_
F(x) = —1 __ exp - —‘—7 (1n x = w,) (A1.1)
/FGY X ZUY

for x>0

PROBABILITY DENSEYY
FUNCITON

Benjamin, J. R. and Cornell, C. A,, Probability, Statistics, and Decision for
Civil Engineers, McGraw-Hill, 1970.

Ang, A. H. S. and Tang. W. H., Probability Concepts in Engineering Planning
and Design, Wiley, 1975,

A-1



The "statistical parameters" for the lognormal discribution are (UY,JY).
The mean and standard deviation of the lognormal variables are (ux,cx) how-
ever the median of X, denoted as X and the coefficient of variation of X, Cx,

are often used. Relationships between parameters and moments are

1. Base e
= nu. -s e, oruy = Tn X (A1.2)
4y S S X y \RAd.ey
2 2
oy = In (1 +¢,%) (A1.3)
. = exp ['J -+ ]_- ol 2] (A'l 4)
X iy T 7 Y .
2 ZuY cvz :JYZ
I =e e (e - 1) (A1.5)
Fale 2
Cx =/ e LR
2. Base 10
= 100, - we - Y 10g. . (1 + €8N wr oy = Tuuak (A1.6)
My 910 #*x 77 P10 X T ey = Tuuygh
022 0,438 1 (1 + ¢, (A1.7)
gy = 0.43 ogm X .
fuy ‘7 10g; (cY2/0.434)}
sy = 10 c (A1.8)
(co27.438)
C, /10 Y -1 (A1.9)

in general, it is more meaningful to use the median (rather than
the mean) as a measure of central tendency for any rardom variable
naving a large variance. The median of X, dencted as X, is aefined
by the relation Fx(i) = 0.5C, where FX is the distribution functicn.

A-2
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Thus i defines the point below which 50% of the population is expected

to fall.

ihe expression fc~ “y ia Fquations 41.2 and + 1.6 can be derived from the

definition of the median

0.50

[
0
N
<
K
><
1]
e
—_
—
s
>
A
—
>
>
g

[}

P(Y < In i)

Fy(1n X) (m1.10)

But, ?, the median of Y, is

~

0.50 = FY(Y) (A1.11)

and it follows upon comparing Equations Al1.10 and Al1.11 that

Y = In X (A1.12)

H

Recall that Y has a normal distribution and as a result of symmetry,

tne mean of Y equals the median, uy = Y. Thus

My = 1In X (A1.13)

The mean of X can be expressed as a function of the median. Equation

A1.13 can be written as,
X = exp (uy) (A31.14)
Equations A1.2 can be solved for My

Ly = exp (;Y) AR (A1.15)
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Dividing Equation A1.15 by Al.14,

iy = X T o (A1.16)

This relationship between X and Hy Proves to be useful because information
on 4y and CX is often available. But when probability computations
are made, it is generally more convenient to use i.

How to make probability calculations.

P(X ixo) = P(In X < 1n xo)
=P(Y < In xo) (A1.17)
But Y is normally distributed with mean and standard deviation (uY, oY).
Thus,
Y -u Inx_ -y
P(X < x) = P(——L < e 1
Y Y
(In x_ -y
=y |—2 ¥ (A1.18)

where ¢ is the standard normal distribution function.
Replacing Hy with X using Equation 4.13, an expression which is generally

more convenient to use follows,

U In (x /i)
) = ¢ -—-—°—}; (A1.19)

P(X < x
- 0 ! o
{ Y )

A similar expression ‘or Probabilities is valid when base 10 logs are

used.,
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How to estimate parameters from data. Given a random sample, of size

n, of X,

X = (X,,X X))

27777 "

the data is converted to a random sample of Y.

1<
)

= (Yya¥peees ¥))

where Yi = 1In Xi'

Then the estimates of “Y and GY aref

- 1 n
uY-bY:HZY

Property of lognormal variates useful for design. Consider an

expression involving several random variables,

axPye

Ud

y =

where X, Y, U are independent lognormal variates. b, ¢, and d are

(Ai.20)

(A1.21)

(A1.22)

(A1.23)

constants. [t will be shown that V also has a lognormal distribution.

A form for probabiiity calculations on V will be derived. Taking the

log of both sides,

log V=10g A+ blog X +ciog V¥ -d log U

*
Max imum likelihood estimators

A=5

(A1.25)




Let,

a
]

logVv , X'" = log X, ... etc (A1.26)

Then,

V' log A+ bX' + ¢cY' - dU' (A1.27)

Note that X', Y' and U' are normal. It follows from the addition
property of normal variates that V' is also normal. Therefore V
has a lognormal distribution.

To make probability calculations, it is necessary to find

parameters (V, cv,). Taking the expected value of both sides of

Equation A1.27,

g = log A + bux. + Cy, - d”U' (A1.28)

But recall (Equation A1.13) that, Wy T log V, ... etc. Substituting for

each u, Equation A1.28 becomes
log V = log A + log X2 + log Y€ + 1og U9 (A1.29)

Taking both sides to the "e" power,

by¢
7 = AX ; (A1.30)
0
Taking the variance of both sides of Equation Al1.27,
2 2 2 2 2 2 2
Iy = b oyr *CT Ty +d Sy (A1.31)

2

But recall from Equation Al,3 that cx.z = In (1 + CX ) «.. etc. It follows

that

A-6
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(1 + Cy ) (A1.32)

(A1.33)

Example of the "Lognormal Format"

Consider a design problem in which time failure of a com-
ponent, denoted as T, is a random variable. T is known to be a
function of random design factors 2 and A." (A description of the
physical problem and what these terms mean is not important in

this example.)

where a and b are constants., It is assumed that the median and
COV of 2 and .. are kncwn. The design life of the component is TO.

The event of failure of the component is (T < TO), and the

probability of failure is,
pf = P(T < TO)

At this point, if we can assume that 2 and . have lognormal distributions,

then T has a lognormal distribution, and from £q Al1.19, (note the reversal

of T0 and T)

A-7
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where T' = In 7. Define the safety index 2 as,

~

2 =1n (T/To)/zT.
Then,

= 3(-2)

Pe

3 plays the same role in probabilistic design as the factor of safety does
in conventional design. To compute 8, the parameters must be evaluated

using a form of Equations A1.30 and A1.32,

T =0%10
2 2
cT, = 0 T = [ In{(1 + C@Z)a (1 + CAZ)b }]]/2
A-8
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